
I
.

_ ~o~n~urnr_I
I : L UDPfl I~~~~!HI 1

U _

‘ O ~ __ __
li ii L —

L F2
~~

I.’ ~~ IH H~°
~ L8

UhIP 25 DUU~ wv~
MICROCOPY RESOLUTION TEST CHART

NATI ONAL BUREAU OF SIANDARDS 1963 A

r

IEVE1L~ ~:i~:Ii~?.
I
I An Experiment al Evaluation of

Softwar e Teatin g
I Fina! Report

I
by

I C. Gannon
I P. N. Meeson

N. B. Brook.

May 1979

~~~~

2

~d

ll
SYSTEMS TECHNOLOGIES GROUP

L c E N E R AL n
RESEAR CH WI CORPOIATION

A SUBSIDIARY OF FLOW GENERAL INC.
P.O. Box 6770, Santa Barbara, CalIfornia 93111

ponsor d by

Air Poro Oftios of Solsntlflo r: .roh
Boiling Air Poro Boss

W shIn~ion, D.C.
Und.r Contract P4BSBO-7 .C.O1o$

Apprs~sd for pablic r•lsaa• ;
dietribstion tu~1i~ited .



• 
I

I
In addition to approval by the Pro ject Leader
and Depart eent Read , General Research Corporation
reports are subject to independen t review by
a staff aember not connected with the project.
This report was reviewed by T. Plainbeck . J

I
I
I
I

I
I
I
i

Spon~ored. by 
-

Air Force Office of Scientific Research IBol,ling 4ir Force Base
Washington, D.C.

Under Contract F49620—78—C—0103

I

II



scc~~~ ITL~~
L AS~i4Az/N~r4~ ~~~~ Oat. EnI.r.d,)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

~~~~~~~~~~~~ ORT MB 

7
GOVT A CCESSIOa~~~Q ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—

4. T ITLE (and SubUt - 5. TYP E OF REPORT & PERIOD COVERED

/4 •i ~~
-7

AN EXPERIMENTAL EVA LUATION OF SOFTWARE TESTING . 1 FTNAL ‘
~~~~

‘
~~

‘

— 

.~ 

- -- ______ — 
— . j  6. ~~~~ vO RM I N G’

~~~~~ R EPO R1 NUMBER

______________________ B. CONTRACT OR GRANT MuMBE R(a)

(
~
/
~~

c /GANNoN)~~~~~~~~/~~~~
~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~. PERFORMING ORGA NIZA 1’ ION ~~~~~~~~~~~~~~~~~~~~~ 10. P RAN ELEMENT , PROJE CT . T A SK

AREA & WORK UNIT NUMBERS

General Research Corporation /
P. O .  Box 6770
Santa Barbara. CA 93111 61102F4 2304 A2
I I .  CONTROLLING OFFICE NAME AND ADDRESS 

,
, . 12. REPOR DAtE

Air Force Office of Scientific Research/NM (/  ~ )fi~av ~~i~ \~~~
/

~;

Bollin~ AFB ,Washington. D.C . 20332 ~~~~~~~~~~ ‘3. NUMB ER OF PA

___________________________________________________ 106
14. MONITORING AGENCY NAME 6 AOD RESS(If dIIf.,w t f rom_Controlfln4 Off ic.) 15. SECURITY CLASS. (o f this r.port)

‘I~ /~ 
0 1:. ‘~, _-~‘/p, / UNCLASSIFIED
/ _— I5a. DECLASSIF ICAT ION / DOWNGRADING

—
~~~ I SCHEDULE

14. DISTRIBUTION S T A T E M E N T (of thI. R.port)

Approved for public release; distribution unl imit ed .

t7. DISTRIBUTION ST. 4 ENT (of ‘ . a b a t r ~ ct .nt.r.d in Block 20, if dItI.r.nt from R.port)

IS. S U P P L E M E N T A R Y rES

19. KEY WORDS (Continu. on r.v.,a. old. ii n.c.. .ai y and idontIly by block numb.r)

Path Testing , C overage , Static Analysis, Tracing , Branc h , Test Tool .

20. A B STRACT (Contln u. on r.v .r.. aid. If n.c...avy and ld.nllfy by block numb. ,)

This report describes the procedures and results of a series of controlled
exper iments desing ed to gather data on actual test tool usage. The primary
goal of the exper iments was to evaluate the testing techniques of path (branch)
coverage testing and static analysis. The evaluation was based on the types of
errors detected- by these techniques and on a comparison of performance with
respect to classical techniques of d ebug printout and execution tracing . A
test program was seeded with errors for the exper iments . The error—seed ing
process is described in detail, cont inued

~~~~ 
FORM 

~~~~~~ / I I
WI, I JAN 73 I~~lJ UNCLASSIFIED 1 / f ~ ~

‘ 1

SSCURITY CLASSI FICATIO N OF THIS I”A ~~E (I9..n bSt. &W.pI47~’

0
—

~~~~~~~~~~



SECURITY CtA~~iYICA~ tOWO F IHI$PA GE(W?i.n Data Ent.r.d)

~O. Abstract (continued) - 
.

VTo date , in spit e of much speculation, no computer ..aided testing
tec hniques for sof tware  have been evaluated in a controlled testing environment ,
This report d iscusses and present s the results of a series of such tests ,

The tecbniques evaluated are path (branch) coverage testing and static
analysis. The basic approach was to prepare program s for testing by seed ing
then with errors whose type and frequ ency are typical of ne w software at the
integration— or system—lev el, of testing .

The experiments wer e conducted in three phases. The first used eight
small programs from a popular programming manual , the second and third used
a 5000—line FORTRAN program used to simulate ballistic-missile defense
engagements. For the most part , both the path testing and static analysis u sed
the SQLAB tool , with the techniques used singly and in combination , In Phase
1, the DAVE system ’s static analysis capabilities wer e also used . In Phase
3, the tec hniques wer e compared with the techniques of intermed iate—value
printout and control—flow tracing.

Of the two techniques, path testing was more effec t ive overall, Its
lack of localiz ed error messages was a drawback , but ‘the enhancement to the
inspection process was significant, doubling the u sual inspection yield . Statii’
analysis , while not as powerful , at t imes detected errors path testing did not
find . It is economical , and its diagnostic message at the error ’s statement
location is a distinct advantage.

The inescapable conclusion remains, however , tha t full y automated computer
aided testing is not possible at present. Fur ther , the errors that are not de,.
tected are generally considered difficult to locate by conventional techniques.
In particular , the missing ingredient seems to be a spec if ication of the legal
path sequences which a program should be allowed to travel • The error—seeding
process is recommended as a mea sure of testing thoroughness ,

UNCLASSIFIED
SECU RITY CLASS IF ICA t ION OF TWIS P*GBf1PP,an B.t. f1



1
I

I
[ 

AN EXPERIMENTAL EVALUATION OF
SOFTWARE TEST ING

Final Report

I
I
I

By1 C.
R.N. Meeson

I N.B.  Brooks

MAY 1979

I
I
I

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AJ SC )
I NOTICE OF T~~~~~~ iT\L TO DDC

Th1~ ~ 1 ~
‘ 

~~~. :~ 1 - ’)~~~~~ and is
apprr~ d iA

~~~~~~ i. — L 2  ( 7 b ) .
D1~ t r i~ .. i .~I A. D. L~~~..
Techui caj .  1nt or~iatiou Officer

_ _  

-

~~~~~~~~~~~ ~~~~

-

‘ - . .

I
I
I ABSTRACT

To date , in spite of much speculation, no computer—aided testing

I techniques for software have been evaluated in a controlled testing

environment. This report discusses and presents the results of a series

I of such tests.

I The techniques evaluated are path (branch) coverage testing and

static analysis . The basic approach was to prepare programs for testing

I
by seeding them with errors whose type and f requency are typical of new

software at the integration— or system—level of testing.

I The experiments were conducted in three phases . The f i rs t used

eight small programs from a popular programming manual, the second and

I third used a 5000—line FORTRAN program used to simulate ballistic—missile

defense engagements. For the most part, both the path testing and static

I analysis used the SQLAB tool, with the techniques used singly and in com-

bination. In Phase 1, the DAVE system’s static analysis capabilities

I
were also used. In Phase 3, the techniques were compared with the tech-

niques of intermediate—value printout and control—flow tracing.

I Of the two techniques, path testing was effective overall. Its

lack of localized error messages was jrawback, but the enhancement to

I the Inspection process was s~~~~~!~~ it, doubling the usual inspection

yield. Static analy~~3~ -WI’uie not as powerful, at times detected errors

I path testing ~ it find . It is economical, and its diagnostic message

at the v’s statement location is a distinct advantage.

The inescapable conclusion remains, however , that fully automated

computer—aided testing is not possible at present. Further, the errors

I that are not detected are generally considered difficult to locate by

conventional techniques. ,~~n particular , the missing ingredient seems to

I

II

be a specificat ion of the legal path sequences which a program should
be allowed to travel. The error—seeding process is recoiiinended as a
measure of testing thoroughness .

—

~~~~~~~~~~~
- -

- VI ~~~~ on
- ~ 

.-

~~~~~~~~~~~~~~ tt
\.l t~ - ,. d~I0~- _j~:r_— ~~~~

h
ii

I
I

CONTENTS

SECTION ___ PAGE

I ABSTRACT i

ACKNOWLEDGMENT vii

I 1 INTRODUCTION 1-1

1.1 Background 1—11 1.2 Purpose of Experiments 1—4
1.3 Major Conclusions 1—8

I
2 PRELIMINARY ANALYSIS 2-i

3 TEST OBJECT 3—i

I 3.1 Modification of the Test Object 3— 1
3.2 Expanded Data Set 3.. 3

1 4 ERROR SEEDING 4-i
4.1 Error Types and Frequency 4—1

I 4.2 Error Generation 4....7

I 5 SINGLE-ERROR EXPERIMENT 5—i
5.1 Description of Experiment 5—1

I 5.2 Path Testing Phase 5—1

5.3 Static Analysis Phase 5—8

1 6 MULTI-ERROR EXPERIMENT 6— i ~
6.1 Descri p t io n of the Mu l t i—Error Experiment 6-1

1 6.2 Results of the Mul t i—Error Experiment

1 7 CONCLUSIONS 7—i

7.1 Effectiveness for Error Detection 7 3

I 7.2 Effectiveness for Verification 7—4

7.3 Value of Error Seeding 7 5

I
I lii

CONTENTS (cant .)

APPENDIX ___ PAGE

A SMALL PROGRAMS FOR PRELIMINARY ANALYSIS A—i

B CHRONOLOGIC AL LIST OF SUBMITTED PAPERS B—i
C PERSONNEL ASSOCI ATED WITH THE PROJECT C-i

BIBLIOGRAPHY D—l

~_ 1

I
I

iv i
- _______

I
I

ILLUSTRATIONS

1.1 Sample Program Listing from SQLAB 1—9

1.2 Sample Static Analysis Report from SQLAB 1—10

I 3.1 Path Coverage Report 3—4

3.2 SQLAB Wrap—up Report 3—7

I 3.3 SQLAB Invocation Bands Report 3—8

4.1 Form of Software Property/Module Matrix 4—12

I 4.2 Candidate Error Site Matrix 4— 12

4.3 Excerpt from Candidate Error Site List 4—14

I 4.4 Sample Error Packet 4— 17

4.5 Selected Entries from Results List 4—19

5.1 Error Frequency in Major Categories 5—2

I 5.2 Path Testing Frequency of Detected Errors by
Category 5—6

I 5.3 Path Testing: Average Time Expended per Error 5—7

5.4 Static Analysis: Frequency of Detected Errors
by Category 5—9

I 6.1 Error Frequency in Major Categories 6—2

6.2 Errors in Delivered Software 6—4

I 6.3 Categories of Errors and Method of Detection
in the Multi—Error Experiment 6—7

6.4 Order of Error Discovery in Multi—Error

I Experiment 6—8

6.5 Multi—Error Experiment Engineering Time
Resources 6—13

I
I
I
I
I
I

TABLES

-

i.i Theo retical Results of Path Testing i—3

1.2 Set of Experiments 1—6

i.3 Summary of Error Category Detection 1—li

2.i Error Classification and Detection for Programs
from The Elements of Programming Style 2—2

2.2 Static Analysis Followed by Path Testing 2—3

2.3 Path Testing Alone 2—4

2.4 DAVE System Testing Aione 2—5

3.1 Path Coverage of Test Object Using Initial
Data Set 3 5

3.2 Path Coverage of Selected Modules Using
Expanded Data Set 3—9

4.1 Error Types Used in Experiment 4—3

4.2 Error Frequency in Major Categories 4—6

4.3 Relationships Between Software Properties
and Error Types 4—10

4.4 Error Run Results by Error Type 4—21

4.5 Errors Ciassified 4—22

4.6 DIstribution of Errors in Modules 4—23

4.7 Category 3 Errors (Site Executed) 4—24

5.1 Error Frequency in Major Categories 5—3

5.2 Error Detection for Each Error Type 5—5

6.i Multiple Error Experiment——Errors Found and
Resources Expended 6—6

vi

I
ACKNOWLEDGEMENT

This project was sponsored by the Air Force O f f i ce of Scien ti f icI Research, Contract Number , F4962 0—78—C— 0 103 , under program management
of Lt. Col. George W. McKemie. Additional research has been encouraged

I resulting in a follow—on effort that applies adaptive search tech-
niques to software testing.

Par ticipants in the project were C. Gannon , principal investigator ,
D. Andrews , J. P. Benson , N. B. Brooks , R. N. Meeson , and S. H. Saib.

We also appreciate the interest in this project of J. B. GoodenoughI of SofTech Inc., F. S. LaMonica of Rome Air Development Center , and
E. F. Miller, Jr. of Software Research Associates.

I
I
I
I
I
I
I
I
I
I
i vii

I
I

1 INTRODUCTION

I This report describes the procedures and results of a series of

controlled experiments designed to gather data on actual test tool usage.

I The primary goal of these experiments was to evaluate and compare two

automated testing techniques , path (branch) coverage testing and static
analysis , by dete rmining the types of errors each is capable of locatingI and measuring the computer and engineering time the techniques require

to detect each type of error.

I S

An additional goal of the experiment was to observe and compare the

I relative testing effectiveness in a multi—error environment of a test tool

capable of both path testing and static analysis and a sophisticated

I compiler having automated intermediate value printout and execution
tracing features.

I The experiments were successful in providing data on error detec-

tion rates and level—of—effort required for finding specific types of

I errors . They also provided a background for analyzing parallel testing
strategies in which the human element, as well as the testing tool tech—

I nique , plays a significant role in the software testing e f fo r t . One of

the most important byproducts of the error—seeding activity was to

I indicate the acute vulnerability of software, especially to errors

which can mask each other or which never appear for any but the most ex-

haust ive test data .

I
i.i BACKGROUND

I Histories of several large software development projects have shown

that roughly half the cost of bringing such a project to operational capa—

I city is incurred In “ testing” the software a f ter the developer (or)

I
I
I
I

1-1

H
the schedule) had declared the product completed.

1’2 In general , this

type of testing is intended to demonstrate that the software is ready for

operational use; in fact, a large portion of such testing is devoted to

detecting and correcting errors that have gone undetected during

development. To assist in this difficult process of testing, various

computer—aided techniques have been devised and the necessary supporting

tools developed . The value of such computer—aided testing techniques has

been both challenged and supported extensively.
3 In the few published

studies on the subject that reported the use of test tools , there is
- f

disagreement on their effectiveness. In none of the studies on medium—

or large—scale software, however, have the evaluation~ been made in a
controlled testing environment in which automated tools were actually

used. The goal of this project was to run a series of controlled experi-

ments to gather data based on actual test tool usage.

Goodenough4 states that 40-92 percent of errors could be found

using path—testing techniques. He stresses that the limitations of path

testing have not been adequately described and that a false sense of con— 1
fidence of program correctness may develop if only path—testing methods

are used. However, Goodenough’s view of path testing excludes the I
functionality of the data, thereby limiting the testing process to

structural path execution. We stress that path testing is not intended

to be performed without respect paid to the “reasonableness” of the input
data. I

W. Boehm, “Software Engineering: R & D Trends and Defense Needs,”
Proceedings of the Conference on Research Directions in Sof tware
Technology, October 1977.

2D S. Alberts , “Economics of Sof tware Quality Assurance,” AFIPS
Conference Proceedings, Vol. 45, National Computer Conference, 1976.

3D. J. Reiffer and R. L. Ettenger, “Test Tools: Are They a Cure—All?”
Proceedings of the 1975 Annual Reliability and Maintenance Symposium,
IEEE 75CH0918—3ROC, January 1975.

4
j . B. Goodenough, “A Survey of Program Testing Issues,” Proceedings
of the Conference on Research Directions in Software Technology
October 1977.

I
1-2 J

I
The few studies that report quantitative results for analyzing the

I effectiveness of path testing are in disagreement. Hetzel1 states that

path testing is of “little value” in the detection of errors. Gannon2

states that systematic functional and structural testing using a well—

defined test plan and a path—testing tool produced an error rate of 0.3%

after acceptance test for the large JOVIAL program. The disagreement ofI errors found by path testing is further shown in Table 1.1.

I While Mangold states that 92% of the errors in a program might be

found, Howden and Goodenough state that perhaps 50% might be found.

The word “might” is used because, except for Gannon’s work, no path—

testing tool was used to obtain the quoted figures. This lack of

I results has lead to the widely divergent opinions on the value of path

testing .

I TABLE 1.1

THEORETICAL RESULTS OF PATH TESTI NG

I Total Path (branch)
Errors Testing Detects % Detected Source

*I 22 7—14 40—65 Howden

28 6 21 Howdent

I 224 206 92 Mangold~
? ? 50 Goodenough~

I *W. E. Howden , “Symbolic Testing and the DISSECT Symbolic Evaluation
System ,” Computer Science Technical Report II, University of California,
San Diego, May 1976.

I t
~T E. Howden, “Theoretical and Empirical Studies In Program Testing,”
IEEE Transactions on Software Enginee~~~g, Vol. SE—6, No. 4, July 1978.

~E. R. Mangold, Software Error Analysis and Software Policy I~iplications,”I IEEE EASCON, 1974, pp. 123—127.

~Goodenough, op. cit.

I _________________________________

C. Het zel , An Experimental Analysis of Program Verification Methods,I Thesis, University of North Carolina, Chapel Hill, N. C., 1976.

C. Gannon, “A Verification Case Study, ” Proceedings of AIAA Computers
in Aerospace Conference, Los Angeles, November 1977.

i 1-3

Howden’s
1
results are based on the analysis of errors in very small

programs (fewer than 30 statements). These programs, taken from Kernighan

and Plauger,
2
contain examples of common programming blunders and provide

a common baais for comparison. Howden, however, did not use a test tool

for his analysis. Hence, for the first phase of our testing experiments

we subjected these programs to actual path testing and static analysis.

A few of these programs were written in PL/l and had to be translated

into FORTRAN so that test tools could be used.

Very early in the experiments, we found that “error” is a very

ambiguous concept. In any software system, designers and programmers

take certain liberties based on the generality of the program, the pro-
gramming language and operating system used, and the requirements for

meeting size and speed limitations. In an environment that tries to en-
force very strict coding standards, ambiguous comments and intentional

mixed mode might be called errors. For our purpose, we defined an error

as any construct that (1) appeared to violate the program’s specification,

or (2) relied on nonstandard characteristics of a compiler, operating

system, or computer.

1.2 PURPOSE OF EXPERIMENTS

Two software testing techniques, static analysis and dynamic path
(branch) testing,3 are currently receiving a great deal of attention in

the world of software engineering. However, empirical evidence of their

ability to detect errors is very limited , as is data concerning the re-

source investment their use requires. Researchers have estimated or

intuitively graded these testing methods, as well as such other techniques

as interface consistency, symbolic testing, and special values testing.

:LHovden, 1976, op.cit.

W. Kernighan and P. J. Plauger, The Elements of Prograimning Style,
McGraw—Hill , 1974 .

R. E. Fairley, “Tutorial: Static Analysis and Dynamic Testing of
Computer Software,” Computer, April 1978

I
1-4 1

I
I

This project seeks (1) to demonstrate empirically the types of errors

I one can expect to uncover, (2) to measure the engineering and computer

t ime which may be required by the two testing techniques for each class

I of errors, (3) to analyze the relative merits of a test tool containing

both testing capabilities and a compiler containing automated,

I intermediate—value and trace capabilities, and (4) to direct attention -

to near—term tool enhancements, based on the experimental evidence.

I The experiments for this project were conducted in three phases.

The first phase examined the small programs from Kernighan and Plauger

I using the static analysis and path testing capabilities of SQLAB1

separately and the static analysis capabilities of the DAVE system.

I These experiments were performed as a preliminary analysis of the two

testing techniques. The second phase of experiments was conducted to

I determine the types of errors that static analysis and path testing are

capable of detecting during system-level testing. The experiments in-

volved seeding one error at a time into a medium—sized program and then

I recording the detection rate and the resources required by each error

detection method. The third phase of experiments was designed to eval—

I uate the effectiveness of static analysis and path testing in a multi—

error environment. In this phase the two testing techniques are compared

I with the classical techniques of intermediate value printout and exe-

cution tracing automated by a sophisticated compiler. The complete set

of experiments is summarized in Table 1.2.
-

I
I 1D. M. Andrews and J. P. Benson, Software Quality Laboratory User’s

Manual, General Research Corporation CR—4—770, May 1978.

I 2L. D. Fosdick and C. Miesse , The DAV E System User ’s Manual,
University of Colorado, CU—CS—106—77, March 1977.

I
I 1-5

TABLE 1.2

SET OF EXPERIMENTS

Phase Purpose Test Object Test Technigue(Tool)

1 Preliminary analysis: Compar— Eight small pro— Path testing (SQLAB)
ison of empirical results grams from The Static analysis (SQLAB)
with published theoretical Elements of Pro— Static analysis (DAVE)
results graimning Style

2 Determination of types of 5000—line trajec— Path testing (SQLAB)
errors which can be found tory analysis Static analysis (SQLAB)
(single—error experiment) FORTRAN program

3 Evaluation of a test tool 5000—line trajec— Path testing and
in a multi—error experiment tory analysis Static analysis (SQLAB)

FORTRAN program debugging/trace corn—
iler (CDC FTNX)

1.2.1 DescriptIon of Path Testinl

Path testing is based upon the assumption that executing all the

paths in a program is sufficient to reveal a large fraction of the

errors when the program is executed. Or, stated another way, paths which

have never been tested may harbor errors. The only practical way to system-

atically check the execution of eath path is by using an automated path—

testing tool.

The first step in path testing is to develop a graph model of the

program using the tool to identify all the paths through it.

This graph model is composed of an input node which represents all entry

points to the program, an output node which represents all possible

termination or exit points from the program, and a set of nodes which
represent all the possible branching points in the program. The nodes

are connected by links which represent statements in the program which

are executed sequentially between any two branch points. Note that this

model assumes that the destination of all branch points in the program

can be determined statically. That is, dynamic definition of branch

1—6

I
I

I
points (as in FORTRAN—assigned GOTO statements when the statement label

I list is not included) is not allowed by this model.

I In general, It is impractical and unnecessary to test all possible

paths through a program. The number of paths increases drastically with

the number of branches and loops it contains. For this reason, the

I criterion of testing all paths through the program is relaxed and re-

placed by the requirement to exercise all of the links (or segments) in

the program graph. These links correspond to all the straight line code

executed in the program between branch points and are called “segments”

I or “decision—to—decision paths” (DD—paths). Note that by relaxing the

testing—all—paths criterion to the testing—all—segments criterion, we

I
implicitly assume the sequential independence of segments. However, ex-

perience has shown that the order of segments is important, thus empha-

sizing one aspect of the path—testing methodology: input data must re—

I flect the functional requirement in order to execute the paths in their

intended order.

Path segment testing (known in this report as “path testing,” and

I having the same meaning as “branch” or “segment” testing) is usually
1 accomplished in the following manner. A set of test data that results

I
in correct execution of the program is taken as the basic test case.

Using this test case, the program is executed and measurements are taken

of the number of path segments executed by the basic test data. The data

I values in the basic test data which have an effect upon the decision

(branch) points in the program are then altered so that every path seg—

I ment Is exercised by the set of test data developed in this manner;

the program output is examined for errors, and any execution—time errors

I are recorded. This process is extremely dependent upon the ability of

the tester, aided by the test tool, to derive data input values which

result in all path segments being executed.

I
I
i

1-7

1.2.2 Description of Static Testing

Although, in its current state of development , static analysis is
not able to demonstrate the functional correctness of a program it is
easy to use and can detect a number of program errors. The static analy-

sis capabilities of the testing tool are:

1. Set/use checking — warning of local variable usage without

prior setting or local variable setting with no subsequent

usage.

2. Call checking — the number and type of actual parameters for

each invocation are checked against the number and type of

formal parameters.

3. Mode checking — the left and right side of assignment

statements are analyzed for type consistency.

4. Graph checking — the control flow graph is analyzed for

structurally unreachable code and loops in which the control

variable is not changed.

Even small programs can contain errors not easily visible in the

source listing. Figures 1.1 and 1.2 show a sample program listing and

static analysis report generated by SQLAB. Except for set/use checking,

the error and warning messages appear at the appropriate source state-

ment. Error location definition is an advantage which path testing does

not have.

1.3 MAJOR CONCLUSIONS

The set of experiments provided evidence for assessing the

effectiveness of separately using two automated testing techniques for

detecting errors of the following categories: computational, logic,
input/output, data handling, interface, data definition and database. IAlso provided by the experiments were the amounts of engineering and

I
I

1-8

a
I
I

•- -~
‘.?:_ LE VCL

•... ._ ~~~~~ SueR,~UTI S
2 -- - - - -

SU~
~ ~ øSO~ y

TeG
OUT Z N

_
__ •

S

~ ~~~~~~~~~~~~~~~
A RRA Y j

S ZSIYCGCR A RRA Y 1 10’0~~~M. aA;4 1~~~~--—. _INPUF 5
~~ LU

, ‘

/
~~ .

1:
(

~11
12 £i~ij1p SV(4,

- 3,

I : :~ ~‘• ‘ I —
~ 1

(2) ~~
• : ~~~~

~
RRA r 1 ‘Sj j 1 :

• •

~~
2 AR RAY 6. 7,

• WIf , j 0

~~
: ‘ • ‘

• (,J:: : :: ‘ • : : IF •G(~ ~Z q • 0
SMALL24 S

• ARRA Y •L7~ AR RA y• I
9~• : : ~~~~~~~~~~~~~~~~~~

l * AfIRAy 1
30

• 1~~3~~14o;i,~
:r1T 2 3131 (2 , I

32 1
~~~ 

• . : 
~1 

•
I 1) . 

•
‘33
36 : £NQj~~~~1~~~~~~~~ 1 

‘37
CALI 

~~

I
UT 

~~~ ~ RR4p 1

~ • TRij~
ARR A Y

~-...--..-.-..- -.-.-..-.

I

4 P1g~~~ 1 ..i .
le Prog~~~ L

SQj~~1 j
~

1-9

p - -

STA T IC ANALT S IS SUBROUTI Nt 9SO RT 4 NUN • A RRA Y I

5?~~ RDCNT. LI NC SOURCE ...

7 C~~I. ERROR Null

• CALL ERROR —

• (14410K CALLED N u N 1 A c TUALLY HAS 2 ARG UMENTS

33 IFLA G = .TRU(.

•

—

G;APH WA RMI NQ
• sTATEMENT 39 Is UN REACHAS L C OR Is iN AN IN FIN ITE LOOP —

—
- -

M ODE WA RNING —

• LEFT HAND SIDE HAS wOCC INTEGER RIGHT 14AP,O SIDE HA 3 MODE LOGICAL -

STAT E ME NT ANALY SIS SUNP’ARY ERRORS NA RNINGS

SRAPH CH(CM1NG 0 1
CALL CHCC$ING 1 0
MOD E CHCC ,IING 9 1

NAME SCOP E TYPE MODE USF OTHER INFORKAT IAN ...
LOCAL VAR IA BL E INUG R OUT PUT

— SET/usE W A RNIN G —
• VA RI A BI.(IFLAG SiT gUT NEVER USED REFER To 3TATE~ ENT4S4-
•

M IXNIJM LOCAL V ARiABLE INTEGER INPUT

• $~ Tiu$(ERROR
• V *RIA 8LC MAX N UM usco OUT NEVER jET REFER To STATEVENT4 S)—
• 5 ‘

STIIOOL At . ALT S I~ SUM MARY ERRORS WARN INGS

SET/USE CI4CCNING 1 1

THE FGLLGII IIG NON LOCAL VA R IAB LE S ARE SET...
ARRA y

Figure 1.2. Sample Static Analysis Report from SQLAB .

1—10

I
I

computer time expended. Table 1.3 summarizes the rate of error detection

and resources. Detailed results, including detection rates for each type

of error within each category , are provided in Sec. 5. The computer pro—

I gram used as a test object fo r most of the exper imen ts is descr ibed in
Sec. 3, and each error type and frequency used in the experiments is des-

cribed in Sec. 4.

I As Table 1.3 indicates, and Sec. 5 describes more fully, path
testing is more effective than static analysis at detecting and locating

computational, logic, and database errors. Even so, the rate of detec—

tion and amount of engineering time required by path testing show it is

I TABLE 1.3

SUMMARY OF ERROR CATEGORY DETECTION
I *I Detection Rate (%) Resources E/C

Static Path
~
, Static Path

i Error Category Analysis Testing Analysis Testing

Computational 14 58 4.0/12.7

I Logic 14 63 3.5/11.7

Input/Output 17 17 1.0/14.7

Data Handling 28 28 2.5/7.0I Interface 25 25 4.0/19.5

Data Definition 25 25 1.0/5 .0

I Data Base 0 38
§

2.0/ 13.9

Total 16% 45% 2.0/24.0 3.1/11.9

I
_ _ _ _ _ _ _ _ _ _ _ _ _

I *
= engineering hours (average per error category).

C = CDC 7600 computer seconds (average per error category) .
As a baseline , comp lete compilation and execution took 10 seconds.

I tPath testing combined with inspection aided by path testing.

~All 49 errors seeded simultaneously.

~Average of all errors detected
by path testing.

I
I 1—Il

not sufficient for use as the sole program verification or error detec-

tion technique, and it is rather time—consuming . Static analysis re-

quires much less engineering and computer time (per error), but the pay-

off in finding errors of a system—level nature is not as great.

The multiple—error experiment indicated that an automated means of

printing intermediate results and tracing program execution is more

effective for locating errors than the combination of path coverage

testing and static analysis. The data gathered in this experiment are

presented in Sec. 6. The conclusion drawn from the analysis of this data

is that redundant functional information embedded in programs is neces-

sary for automated tools to be more effective.

An important outcome of the error—seeding activity was that when

program ver ification is based on demonstrating comple te path coverage ,
one can still expect approximately 25 percent of the program errors to
remain. Path testing depends upon some manifestation of an error in the

program output. We found that , when known errors were inserted, and the
program was cxecuted with complete coverage data derived from path test-
ing, 25 percen t of the errors did not cause any change in the output.

These errors were not used in the experiments.

It is possible that many of those errors are harmless in one
specific application of a general purpose program (e .g. , incorrect
computations are never used or are corrected before harm is done) . It is
more likely, however, that the data generated to satisfy the path testing
requirements of a specified percentage of coverage cause control flow to

execute sequences of paths which do not exhibit the errors. This is one

reason why path testing should always be coupled with stress or boundary
condition testing. Overall path coverage may not be increased, but the
right sequence of paths may be executed to expose errors.

I
1—12 1

I I
I

Th is set o f experimen ts rein fo rced the intuiti ve feeling that

I error detection is a difficult and highly individual process. Even

armed with test tools, complete software verification is still very

I much a function of human intuition and resourcefulness. The software

testing process should not depend entirely on any single current state—

of—the—art technique but should encompass as many tools as is practical.

I Attempting to detect seeded errors of specified type and frequency

during system—level or acceptance testing provides a valid measure of

test data thoroughness (e.g. , did the execution output show the presence
of the seeded error?) and fault tolerance of the software (e .g . , did

I other parts of the software correct the error?)

It appears that , until software specification and implementation
I through a computer language are more integrated and standardized ,

software testing will never be an automated process.

I
I
I
I
I
I
I
I

‘ I
i 1-13

~

/

I

2 PRELIMINARY ANALYSISI Eight small programs from The Elements of Progra~r’~ing Style
1 were

tested using the static and path testing capabilities o1 SQLAB and the

L I static analysis capability of the DAVE system. These programs, all
under 30 source lines, performed such functions as table lookup , binary

f search, and computing electrical current . Listings of these programs

are included in Appendix A.

There were two motives for spending any time at all on these small

I
programs : curiosity, and the fact that Goodenough and Howden both have

based comments regarding the validity of path testing on these programs.

Neither researcher , however, used an actual path testing tool in making

I their judgements. Table 2.1 presen ts our resul ts from analyzing the

eight programs. We have categorized the errors found into three

levels. We consider the first level errors the most serious in terms

of their impact on computed results and possible cost (in a non—test—tool

environment) to detect. The third level errors are the leas - serious.

I For these same programs , Howden said that 40—65 percent of the
errors might (he did not actually use a tool) be found using path test—

I ing. Our experience was that 70 percen t of the errors were found by
path testing. When the programs were subjected to both static analysis

I and path testing , 38 percen t of the errors were de tected by static

analysis and another (no overlapping errors considered by the path

I tester) 38 percen t were found by path testing. The errors are further

described in Tables 2.2 — 2.4 .

I
I

1Kernighan and Plauger , op. ci t .

I
1 2-1

TABLE 2.1

ERROR CLASSIFICATION AND DETECTION RESULTS FOR PROGRAMS
FROM THE ELEMENTS OF PROGRAMMING STYLE

CATEGORIES NUMBER OF ERRORS
Static and Path Pa th Testing
Testing Combined Alone

S P X P X S~~~ static
Level 1. analysis

Uninitialized variables 7 0 0 7 0 P -
~~ path

Computational logic 0 2 1 2 1
tes ting

Loop Logic 0 5 1 5 1 X + undetected
error

Level 2.

Unchecked array boundary 0 0 1 0 1
Equality comparison 0 1 1 1 1

Level 3.

Improper termination 1 1 0 2 0

Mixed mode 1 1 2 1 3

Unused variables 1 0 0 0 1

totals 10 10 6 18 8

To tal Errors = 26
percent 38% 38% 24% 70% 30%

in this small exercise, path testing alone uncovered most ot the

errors found by static analysis. However , errors detected by static

analysis used but a fraction of the resources path testing required.
In addi tion , the static analyzer points out errors explicitly. The

DAVE system detected all the errors SQLAB did , with the exception of

one mixed mode and one improper program termination error. In path

testing, the execution output must be studied for possible errors, and

the execution coverage reports must be reviewed to determine what paths

were taken when erroneous behavior was exhibited. If there is little

output produced in a program , then the tester may have to add printout

statements to display intermediate results as paths are executed.

2—2

---~~~~~- - -~~ - - - - - - - - - - - -~~~~~~.

I
p

>.

~~~~~~~~~~~~~~ A.

-

~~~1-.
K A . ’o I

-~
I

I g 0)
4.1 E A.N

/ 4..
-I

El I.. — ___ ___ ___ ___ ___ ___

A. 5
0

Cl) I..
U)

Cj) 4.l ~~~ i~ z
0 0. A. U)

U, 00 ’OC’) 4-4

____ ____ ____ ____ ____ 4 . 4 0
Ci’ 5 — .— —4—

~~~~~~~~~~ F-. 14 C
.4

Cl) 0 ) 0 ) 0 )>.I C I.l 0 I A.~~~~I-.
A. K

‘-I
r~~~~4 .~~ C i..-: 

—
4-.

I ‘0 0.
N C )

~~ 

U)C~l ~~~ U te.i ~.. ‘ - 4 0 )0

14
— _ _  _ _  _ _  _ _  _ _  _ _  _ _  

0 U ) N

~
CO ,~~ C‘-4 0

I—I 1.1
C,, ~~~~4J

C’) K K A. ‘-4 1J N
N o, . .

~~ 
.Cj

~~~~ 

I C N N

Z G I
~

u _____ ____ ____ ____ _____ ____ E l — I

.4 CZ 4 . 4 0) 0
°

H 1-’ O A. 1 . 4 0U) 4..
K

A. Cl)

Cl)

4-i
0
4-1 A. CO
4.4 0 .4

C J I 0 0)
— g

0 1 C .4 N .4
.4 1.4 C I..

Ci) CO N COCl) ..-4 CI P. N 1-. C NN U N N 0 5 0) 0 .4
A. .“4 C •~l 0 N ‘0 0. I~ .4
)‘~ . 00 ~ 4 .-l C C 0 C..

1-4 N .4 1.4 N ~ 0 N C N N 4.4
.4 1.4 .4 ,-l .C N 0 0 4.4 i~ NC.. 4.. N)~ 00 - .0 C.) 0) 0) 0.0 Cl) 4.4 U “.4 ~ .0 N .4 ~1 5 ‘0I.. ~ N ~ O N >~ 1.J 00 I-. (0 CC.. A. 0. ‘0 -4 C-. ‘-4 N -.4 0 N I.~ .0 .0 ~14 ‘ 0 5 0 9 0) ,C 1.4 5 .—4 0 . 00 .. 0
N 0 0 ~ I.. 4.4 Cl) C.. •.-4 E 0 i.. -o -~~ ~~.N C) .-4 ~ N ‘1.4 N t l) I 0 I. 0 C C

N N 0 Cl) C U I . . I U 0. 4.. ~ ~ 1.4
4 4 . 4 ‘.4 ‘0 A. 1.~ W 1 . ~ 0 -‘-4 C 1 . 1 4.. 0 0 0

N U CI 0 ~ . N C) N N N I ~~~ ’. C.. CiC 9.4 “~~~~ CN N S 1.4 0) 0 - N .N ‘-4 ClO 4.4 U
4.4 C.. 4.. 4.. C.~ U 0) 4.. ‘ 01 . 4 0. Ci Ci

C.. 0 I l. i 0 (0 I . . U C) N N I . - 4 0
5 0 0 N~~~~ 0 4.. 0 5 .” ~ C O I N C.. N
.4 U U X i A. -‘.4 4.4 U C) 00 5 0 1 0 A. U U) O . K
C C C - . - 4 1 5 N X C C O 0 C 1 0 B

~~ 4-’ 4-. Cl. Cli ~ ‘.-~ u ~. . 1 I U .-.
0
.4..

I
I

2—3

I

4- 0-

I
_ _ _ _ _ _ _ _ _ _ _ _

K O -

N

0 ~~ A.
C..
0-

N

C A.
0.
A. K A. 0. 0-

-~
~~ 0.

.4)
0 C.?
I-. N
0. 0. K 0.

U.. -4
0 -~~

c’1 B ‘~~ ‘C
1-4 —

N ~~ 0. A. U

~~ 1-4 Cli g,J C~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4-i
— N

0.

A.
b O. O . KZ K
1-
U)

I
.4 5 —4

0 i..
0 5 ..4 CO

.-4 .4
CO

CO ‘.4 CO 0. 4..

N
II -

~~

CO CO N N 0 m 0
~~. —~ .4 0 (Ci 0. 1.— — C C I.
I-’ N .4 4’ CO 0 CO CO A.

.4 41 4 .5 CO 0 — ‘I
4.. 4.. 0) P4 41 0S .-4 .0 U g0 0) 4 1 CO .4 0 .~ CO -~~ .4

‘0

i4..
~ CI CO C O N ~~~~~~~~ ~~ 4.. -.

14 0. 0. ‘0 .4 1. .4 0) .4 0 0) P. 1. ‘0 411.) 8 CO 1 4 . 4)~ 0 1 4 0 4 . 49 CO . 5 1 4 1 4 5 — ~~~~~~~~ 0 5
N U .-4 ~‘ CO O-. C O N P. 1 4 0 0’
.4 41 C O O CO C U C.. U S . CO 4 1 5

41 ‘0 0. ‘.4 CO 4.4 ‘0 .4 5 P..
CO U U 0 ~~ C O O CO t I N ~ 1. .5 Ci
.4 II W A 4’ CO 0. CO g .-4 4.0 41 ~~,

(.4 I4 1 1 4 4.. 1. 14 1) 1 I~ ‘0 ‘.4 (0 0. K
. 4 1 4 I. ‘0 4 1 0 0) 1 4 t i C , CO CO ~~~~ 0 SI
5 0 0 CO 0 1 4 0 . 5 . 4 > CO 0) 1 4
. 4 0 U N A. -.-4 1-i U U 4.0 C C I CI ~ . 4.

05 5 5 . 4 5 CO X C S Q 3~~ 1~~
’

,-, 41u — — ~~ I-I .4. II) -4 —

I
I

2-4

— —__ -_— ._—— “ - C__

I

I
I I-. I

I K

-

~~I-.
K KC

-i

~~~~~~~~~~~~~

- -l

‘ I _ 
_  _  

K

N — ____  ___  ___  ___  ____  ___  ___

— x
K K K ~~z

C
N

— _ _ _  _ _ _ _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  C
0

.4) —
U -I 0 Z 00

~~ I.
C’. -~ K K K C

—4
41 

4..
CO0 ____  ___  ___  ___  ____  ___  ___  4)-: 4-

A. BI-I 014—’ 4-i
K CO

— U)
U

4-4 Z

— _ _ _  _ _  _ _  _ _  _ _ _  _ _  _ _  ‘4’Cl.I
14

>~ C K K K
U)

I C..)

U
Cl.

Z O K K

0. -
0

C)
—4 —4 5
00
O C
‘.4 -‘.4 I-.

CO (0
CO ‘ N A. U C.. C
41 U N  N 0 5 ‘C 0 .4
A. ‘-4 5 .4 0 ( 0  ‘0 A. C.. Cl)>s .0 0 — -4 5 C 0 C..
4- 4’ N 0 0  U C U

4’ .5 N 0 ‘-~ 0 4.4
C.. 4. (0 N 4’ 00 .-I .0 u
0 ( 0 4 . 4  (~ .4 0 . 0  SI .4 — 4 5  ‘0P.. ~‘ CI 4 1 5  O N  1.4 00 4.. (0 5

‘0 
~~, A. ‘ 0 . 4  1 4 . 4  N — I  0 ( 0 4 .  ..

0 O N  .5 1. 1. 5 — 0 . 0 0  1 0
N O  0 5 1 4  ‘~~~ N 1 4 . 4  > ~ o 0 ‘0 4 1
N U .-4 0) 9-. N N 0 1. 1. C

Cl)

.4 N 4) 0 0) C C) 4. C) 0. I.~ 0 4 . 4
— ..4 4.4 ‘0 0 . 4 1  0 ) 4 1  ‘ 0 . 4  5 4 . 4  0 1 0  0
N . )  C) 0 Cl. N C )  N U N  >~ 1. ‘4-’ 5

—4 N N E  1.. 44 0 . 4 4  .~~ .-4 00 4-4 U .5
4.4 I.. I.. 1. 1. 1) (0 C.. ‘0 .4 A. U 4
. 4 1 4  C.~ ‘0 ‘.4 0 N 4 .  CO U U 41 . 4 0  CO
C O  O W  0 ’.-I 4 . 0  C ..4 > 0) ( 0 4 .  C O C K
.4 U U N  A. 1.4 (1 C) 00 C CI 0 0 .
5 5  5 .-i 5 ( 0  X C  5 0  0 5  o E
0 — ‘I  4’ ).. 1 4 4’  ~~ ‘-Ci U ~ 14 ’-. 0

.41

I
I

2—5

I



I

3 TEST OBJECT

I The program selected for Phases 2 and 3 as the test object for
I error seeding is an example program from the TRAID subroutine package.1

TRAID, a CRC software product developed in 1968 to help solve missile

I trajectory problems, contains 105 modules primarily for calculating
powered and guided—flight trajectories and Keplerian orbits. It also

I includes support routines for vector and matrix operations, conversion

of units of measure, plotting, and report generation. TRAID has been

in continuous use at CRC since 1968 and has required very few changes

or modifications over this period.

The test program computes the closest approach l~etween an ICBM and

an interceptor missile. Data for the program includes descriptions of

I the ICBM’s trajectory and the interceptor’s flight characteristics,

(i.e., thrust, mass, burn time, drag, etc.) and a schedule of inter—

I ceptot maneuvers.

I The test program employs 57 TRAID routines which expand to ap—

proxim ately 5000 lines (over 3000 complete statements) of FORTRAN code.

I This program was selected for error—seeding because it is stable , be—
I lieved to be bug—free , and large enough to constitute a realistic de-

bugging problem.

3.1 MODIFICATION OF THE TEST OBJECT

I A number of modifications were made to the test program to re-

place some of the non—MS—standard FORTRAN code which the SQLAB test

tools would not accept, correct errors found during static program

testing, and enable the program to process multiple test cases in a

single run.

Plambeck , The Compleat Traidsman, General Research Corporation ,
IM—7ll/2, September 1969.

I I

I
i 

3-1

p



3.1.1 ANS Standard Corrections

A lenient compiler and unenforced coding standards contributed to

approximately 167 lines of non-standard FORTRAN code which could not be

recognized by the SQLAB test tool. Three types of illegal code had to

be corr ected : mul tiple assignment statements, multiple statements per

li ne , and an alien form of DATA statement . Functionally identical ANS—

standard FORTRAN code was substituted for the offending statements.

3.1.2 Static Analysis
Static analysis of the unseeded test program using SQLAB revealed

seve ral potential sources of error . For example , in one case two

locally declared arrays were assumed to occupy contiguous storage

space. The second array was used as an overflow area when the first

array was filled. Data could be read into the second array but was

only referenced by over—subscripting the first array. This error was

indicated by SQLAB’s set/use chc~king facility since the contents of
the second array were set but never used.

Other errors included incorrect array dimensions and a number of

mode violations for data types involving character (Hollerith) data.

None of the errors found , however, appeared to have any consequences

either to the operation of the program or to the printed results for

the example test data set. “Error” as is used here means a violation
of the language definition or a dependency on the non—standard charac-

teristics of a particular compiler, operating system, or machine.

3.1.3 Multiple Test Cases

The test program was further modified to enable the processing
of multiple test cases in a single run. The main program and two of the

TRAID routines were adapted for this purpose. The multiple test case

capability was originally intended to simplif y the testing process. An 4
added advantage is that a significant portion of TRAID’s data manipu—

lation facilities are now exercised by the test program. I
I

3-2 1
— ~~~~-.~~~---



I
I

3.2 Expanded Data Set

I The original test data set taken from the TRAID user’s manual

exercised 50 percent of the total paths in the test program. SQLAB’s

I instrumentation facilities and the trace file analysis program were used
to create additional test cases to increase the number of paths tra-
versed. Based upon module function, size, position in the module

I hierarchy , and path coverage from initial data, six modules were selec-

ted as retesting targets. The expanded test data set resulted from

I using path testing techniques to modify the initial data set. Using

the expanded test data, path coverage for the six modules rose from 44

I percent (with initial test data) to 75 pe rcent .

I 3.2.1 Instrumentation Techniques

Instrumenting a test program using SQLA B causes software probes

to be inse r ted in the program to trace its execution. The program is

I then run with a test data set and a trace file is produced. The trace

file is automatically analyzed and a path coverage report is printed

I for each module, as shown in Fig. 3.1. Program paths which have not

been exercised by the test data are flagged in this report. It is then

I up to the tester to determine the conditions that cause these paths to

be traversed and to devise appropriate test data.

Executing the complete instrumented program resulted in the path

coverage information listed in Table 3.1. Path testing computer time

I (on the CDC 7600) for the complete test object was as follows (in

seconds):

I Instrumentation 30

Compilation of instrumented source 11

I Loading object file 1

Execution using initial data 39

I Coverage analysis 21

Total 102 seconds

I

_ _ _ _  - 

~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~
. 

.—



I - , I I I I ‘ I
• I 4 .’ . 4~~~I I ‘ . - ‘ I
~ I l l - _ I  I

• I ~.. I —. ,~ .4 . —. ,~ .4 4 Fl F. 1. ’ I. P. 0) .0 F’ I’. P. S F.. — 41 ~) ‘0 ...4 I 0)’I I (~ —. I - S CO 4.3 41 5 .~ Cd CO 41 P. 41 40 Cd - ,  5’a a ~~ ‘ t — —. .. I . .-. -
• I Cl .3 I C a .-.
• I~~~~ J I  C
a I ( .. i I  I I• ,.

~~~.I, , I I
• a ‘~~~a P I . 4I I I - I II
• I . 4 I . .4 .d ~~~~~~~~,—. .—. .. ,. ... — (.4 (4 k4 ’.4 4-4 fl I. ~~.4~~.4S* 4~~.4 04

I i I 1 ~I I 4 ,1 40 Fl S P. 0)’ - 40 41 41 N, d’(‘0~ 40 Fl (‘ 0) .0 P. 0’ 0 Ci Fl S 0) ‘0 4
I I ‘ I .1 P- F . - P. P . C . (0 4 1 4 1 4 1 5 . 0 ~~~~~.) N , F’ 0 F ’ J (I P.
I I I I I . I ~~I I I - ‘ I 4.)
‘ ‘ I I I I s
I I I . I I 20
I I .4.4 4 . 4 . 4 . 4 •4 . 4 . 4 . 4 . 4 . 4 . 4 f l . 4 . 4~~~~~ f Ia
I I I . 1
‘ I 1 • l C ,
I I I I I 1 P.
• 4 C C i ~~ .0
I I I I ~ ~~,‘ 04
I I .‘ I - 20 4 4
• I ~~~ l • • ,o - I o. .o• • 0 I I . *‘ i 01 (‘4
I I~~~~~~~ I I • CO I
I • D I I 10 • ~~I I~~~. I I I 0I 1 . 4 1 4 4.4I 1 * 4 1 j

~0 . 1 X II 4-‘ • ~~~~~~ I I • x l I I.I ~I 1 2 0 1 1 I 20 I ~~ 0
• . 1 . , I CO I X 1.4
• ‘-‘ ~~ 1(0 0) : . 1 ~ P. U
• I P - C O I - .10 0) I Z ~~- ~ I
• l O l l ~(0) - I .~ 41

I I I . I 1 ‘0 0)
• I 0)1 I I - CO . 29 . I P. Ia 00I 1 ~~ I I * ~0 CO I I 0
• ~fl I .1 I I ‘ CO CO ‘4 I P. P.
I I.. I C I I - C O N

~~~
‘ I I ZI Ill - ‘  ~,, . I I 0) CO 0) I 41

I ‘0 I 20 I I CO CO lC~ I U
I U  4 0 - C l  . I ‘ C O N  20 I 

~~ 0• I I I CO N x I t.I
4 1 -  I I I  . 2 0 3 0  10 I C 1 0.• 1 )  I l l S  * 20. 2 0 * -  0 ) 3 0  0 ) 0 ) 1 0  CO I
1 4 1  I I I  I I CO N, C O N  C O N  C O X~~ CO - II I —  I I I II 3 0 ( 0 .  0 ) 1 0  * 2 0 0 )  20 - I 1.)I , , 0) a I CO CO CO CO CO CO CO C O ’ .  CO
1 (14 a O l  I 10 .4 ’ 4 2 0  * 4  * 3 0 ( 0  14 .I 1 0 . 1  

~ X i  C O N  C O C O  N I I -I : I . 4C ’ I I 20 X~ 0 ) 0 ), 0 ) 0 )  C O C O C O  ‘C I C C
• I 4 — ? I  • * 4 , 0) 0) ~~~ 4 ( 0 0 ) 0 )  0) . 

. . ‘• ‘ ~~ ‘ I I 20 II . l( CO CO 4 20 0) .4 I F’I II. I , .1 I  I . CO C O .  C O N  C O N  * 1 4 . 4  CO 0’I ,.) I~~~I I I  1 0 4’  **  ( 0 2 0*  20 -
• 4 ( 0 , ,  10 30 C O N  1 ( 0 )  1 4* 0 )  CO 1 ~~• ((1 4.4 1 I IN CO N 30 49 19 (0 0) CO CO I .0 (‘-I
1 1-  •~ • ‘~~ I lx x N * 0 )  . 4 3 0 4 -  CO I Old
1 . 4  4 1 4 . 1 4  I . CO 20 0 ) 0 )  • 4 ( 0 )  0 ) 4 9 4  10 I S U1 ‘ 4 0 . 4  . .* .4. ~~~~~ . * 0 )  ~~~~~~ 0) - . 1IV 2  ‘ I  C I I  .0) NI  . 4 0 )  0 ) 0 )  ( 0 1 ( 0 ) .  0) I • i 0I I.) I . 2 0 .’d I I CO NI (0 0 ) -  ‘C C O N  CO CO 0) CO .0) I • 011 2 0  1 4 1 1 1  • i •  .9 0) C O C O  . ( 0 * 4 4 ( 0 4 ’  (0 (0 ( 0 ’  • ~I —• I C .  I . - .  . 0) XI  0) 0) .4 30 1 

~‘~~.i ~~~~ 1 I I I • * ‘0)’ . 0 )4  • . 4 X 4 4 C O 4  .4 (0 _( • - I  UI .  I~~~~~~I I P ,* 0 ) 0 )  fl N * *4 ’  4 * I I  I l d
I~~ .4 I Z I  I • 0) * 4 ( 0*  C O 4 * 4  — 0) CO I CO
I~~~~ 5 I 4 4 • ‘CO 0)!  * *!  X 4 * N  CO 0) 0)1 II 41

~~ 1   I.e CO 0) 0)~ 0) 0) .4 - . 4  CO 3t .1 I .9 ‘Cj  • I —u _ a  1 . 4  , I I . ‘ I
• _) • I  .4 ‘4 I 

~~~~~~~~~~~~~~~~~~ .4,... 5I~~~ I I , , I
• .J I I 0 0 CI .3 ~ ‘ CI ‘1 • CI - , CI 3 CI I’l 0 0 3 I
II.) 5 0 I . 1.30 ~~~~~~~ ~~~~~ CI C I C I ” 3 3 0 3 3 . 5
• - I ..I I 0 CI 5 C’ .3 0 2 CI .3 .) CI 0 0 .0 0 0 CI I
• I — I 0 CI 0 2 ’ 1 ‘4 . J ‘ CI ~~ ‘4 ‘.4 .1’ ‘ 0 13 ~ I
• I CI I ‘CI 0- ‘, -, “~ . .~ .2’ ~ CI 00 2’ .
I 1 0 1 I • • 0-I I .i I . I II1 I~~~ - I I I I
I ‘ p 1 4 1 I I ~~I I ‘I I ‘ II s 4—. , , , . ‘ . —I ‘ 0 1 I I 01 ~~~ ‘ I I Z
4 0) ‘ I - I I(. 4 1 I I 11 0 4 . I I NI

~‘I ~~~ , t ’C I ~~~~.‘ —i ~~~~~~~~ 4’d 30 P . 1 . 4 ’ P.~~~ 0 ’ I C.
• .. á • Z I I -4 4 I -.1 P. C. I.- . -~~ .1) 2 • Os SI~~~ I I . .‘ . . ,

• ,
I I Ci.l~~~ _ • , I • , I ‘ s I~~~~I .4 I ~~~~~~~~~~ •, .. — — .. .— —. -. .— ..~~~~~~~~~~~~~~ ..—. —. .. ., .., . 4 .. — .— _ _ _ •

‘ ._ ,* _

I I I , ,
‘ ‘ :‘ ... 4

a .~~~ , ‘ , : I I I I I ‘~~1 4 1 ~~~~~~~~~ - I ‘ I . - I 1 P.I ,j I (0
~~ I ‘.4 ~1 P ’Ifl .11 C., ~ ..I ~~~~~ • 0’. 1 ‘ 4 4 0 0). 1g4 0) . 4 0)4 ~ .41 .0 C’. .41 .0) Cl . 44 0 F . (201 9 C. ‘% I ‘ 0I 2’ I It I , ‘ . .4 ‘4 .4 • ‘0 . F. P. . - ,. ,~ .‘. • I) II ~~~‘l’ 0)’ ‘41 0)1 41 Ii II ’ 1 1’ 4’ 40) I’ • 0’ I I-Ij I T I C ‘ II . , . I -I ’) . 0 3 1 ‘ I . • I i ‘ I I

4 2 0 I~~~~ 2.~ I C
, 4 I ‘ I I I

I

I
I

t
I

U1
4J 0L~
~ ~~I Il-C ‘.0 C~

) F- . ~~ (“4 -. C’ .~ ! .—I m ~Cl ((“i c— 0’, —l m o~ o o o o r” a”. 0 0 .~C. C~ 0I U 4 - I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 I ’-~~~~ Q Q N 0U UI

4- ~‘i -~ ‘-4 .-4 p-4
U 01

54 C~~4

I
‘-‘4~ Ito 

~~~4-~ 1_a l ~“4 ~~ ~‘~‘ C~C (“4 ~~ .-4 ‘—I a” r”. (F’4 a” a” r’- r— 4 F.”. ‘.‘) -.3 .—4 (Cl .-4 af’~ 0’ (Cl Cl as .—I m

I 0 001 C’.4 ~‘j
1-1 541 C’

I-C

I S ’I-I .e l -~I
O ’ . C ~~~ Il_ C

rx~ 1.4 s-I ‘-~ ~~ - —~ 0”4 r-I (“4 .4 (“C 3 ~ 4 p-I ,-i (‘.1 ‘4U~ (0
~~~~

I
I ~ WI < oo~~~: z~ —54 I_Il ~~~~~~ o~~~< qo~~ ~~~~~~~~~~~~~~~~~~~~~ 1~I‘ ~~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cZ •W~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~S-I 01 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~> .  0 0 0 00 0 00 54 (/~~V ) V ~~~~~0 Q’U

I z -IC ”_C.. -s -Ic “0)I-I

(‘-4 ~~
(Cl 54

0

I p.
~ 

P.) UI
4-I bC~

‘~~ 0 ~~~~I-I U 4-II
1-4 ( J U l ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I 
1-4 

~~
‘ 0 0 “b ‘.0 0 C’ if’. 0 ‘.0 0 0 ~~ C C ~~ 0 ~~ .3 .3 .3 0

U 01 4-~ 4-4 p-i -I ,-I~~~4 ~~I 4 ,-4 I 4
54

0

I ~D —~-~~ 0 0 .~~,
~~ ~~ ‘Ii ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1z~ 0 (0~ ~-‘4 C 1  05 (“4 ‘.~~ ~~C 13_C ‘.0 (Cl (SI -3

~
. E4 5 4~0

I c,

54

I S ’
.~~ 111 if’. Il-C (‘4 (“1 Il-C 4 fl .-4 C~4 .3 ~-4 C’ if’. .—4 p-I 054 ,-4 (Cl -.3 U_C (Cl -3 ‘.0 ‘.0 il-C Ic-I 0’ 0 ~•‘-
1_I ~.‘4 1-4 4-4 II-’. ~ 4 ‘3 ‘3 054 (SI (‘1 ~~ (“1
00

I
-3 I__a 1-~

~~ ~~~~~~~~~~ z~-. r~ o~~~ I-a

I ‘~I ~2~I <~~~~?4~~’ 4 O V~~a 4 0 ~~-4 (.~ OZ ~~~~ —~ US .
~ I ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ I, ~~~~~~~~~~~~~~~~~~~~~ ?~~

—
~0

. c _.~ 0 (~. -.~~~-4 
~~~Q 1 .~~ ~~ p_1 p~~,.’4 pj Q IJ~~~~~ Z 0 (# )

I
-Ic

3—5I
__ _

3.2.2 Retesting Strategy

The task of increasing path coverage is easily subdivided on a

per—module basis. Several of SQLAB’s documentation reports provide

additional information for managing the testing activity. For example,

the wrap—up report, shown in Fig. 3.2, lists the number of statements

and the number of paths in ~‘ach module. The invocation bands reports

show module dependencies and the calling structure of the program which

are also helpful. These reports can be generated for each module in the

system. One is shown in Fig. 3.3.

Choosing test targets for expanding a data set should be based

on software function, location in the module hierarchy, path coverage

derived from existing data, and other factors particular to the test

object. A general path testing—based methodolody is given in the JAVS
1Use r s Guide.

For this test object, eight of the largest (in terms of FORTRAN

statements) and highest level (in terms of module control hierarchy)

were selected as targets. These modules are the starred and checked

modules in Table 3.1. Using the initial data set, most of the

modules had fairly low path coverage. It was found by inspection that ,

due to the data passed to them by the main program, modules ORIO and

STOUT would never achieve much higher path coverage unless they were

removed from the test object environment and driven separately. Thus

they were omitted as test targets for the purpose of expanding the data

set.

Path coverage of the remaining six modules was used as a basis

for data set expansion. Several additional data sets were derived,

and the resulting path coverage is shown in Table ~3.2.

1C. Cannon and N. B. Brooks, JAVS Technical Report, Vol. 1: User’s
Guide, General Research Corporation CR—l-722/l, June 1978

I
3—6

I
I

CIV. fdAri(TYF ’t MODE L~~~~~JA~~l- ST~~iS — .~i~s E.4 T KS c1-vi ’ .~ (Qui ll R(i~Os ~R ZTS CI’.P!

I I PI~1M~~~4 PI~OG TYP (L (~~S ~C i-oIN~.,, 1 0 0 0 0 5
2 ~L) 1 v FUNI. i~_ l.~ I~~I.1Ni.I~ 7 2 1 0 0 0 0 5
3 A L~~ Fu~c -al t. FCISTRIII, 13 1 1 2 0 0 0 Ic

l’.ZF F UNC .~ 0. A L f L . ~ 1I~ Ml4 0 1 1 0 0 0 0 3

I S C A X IA L FU ~J C. ~~~~I- I.. I ’ . 4 1 K 1 f, 5 1 0 0 0 0 5
L. ~~~ ~U~ R IY} LL(.SS f ,.ITh C.I 1 5 1 1 0 0 0 0 1
7 CI~L pçF1 L FI.~tJC -‘~~~L l’Lhl~s S4 I. 2 3 1 ~I 1 1 0 0 6
8 l-$O~n1L rI.,II .c i’L~~. F ,.ft 1KAI~ 5 5 1 0 0 0 0 1

I 9 CLIUI~QUT S~~rk TY ~ LLLSS ~~ 4T I~u~, 7 3 1 1 0 0 0 3
30 CiIOS~ S1j.., b flFULLSS 1’C IsT I4uf ~ 19 3 2 0 0 0 0 Ic
U D1~1~~F I L. ,C ,5l-l~L P LII Ip~lIP’. 5 1 1 0 0 0 0 1
1~ D1~~C~.U SLi.~S T ’V I ’ - L L LSS .blh.I l’. 20 b 1 0 0 0 0 12

I 1’~ Dr~~~fl Eu~.C I’4LP~~ F L i s l N l C p. 22 1 2 2 - 0 0 0 8
1” Ocr - h.,i.. p, L~~I. I’ L l. 6 2 1 0 0 0 0 1
15 O T I M E I lu. C P(A ~. T RAF, 5 1 1 0 0 0 0 1
lis (LF Fui’,C ~4 Ls~t. ~ %. I4 T kMr4 10 1 1 0 0 0 0 3
17 EUt.ttI1~ S ULk 1~~~ ’ L L L ~~ S IL i (IC IM I . 112 14 1 1 3 0 0 33

I is FLA C Sut k TTPL Lc. S~ ~-‘..~~IRuj’. ieo 3 1 3 3 0 0 914
19 FL 1p~ S LLC ~ T Y ~~1LL5S F L C T P II4, S’e 14 1 2 2 0 0 23
10 FL1~,Il1 SL C2C S T Y P - t L c . S S FC~4TRMl, 16 14 11 1 2 2 0 2 63
21 ~L1N SLLI~ TTP .L.SS FCi~ T I4 M r ’ ~~~ Ic 1. 3 1 2 0 69

I 12 FOu L FLII .L ‘ C 1 ~L 1.1IIHAI, 12 1 2 1 2 0 0 1 53
23 GRa Y SL~,i~ 1Y F ~’ .Lc ,SS FLI .1(MI 15 2 1 2 0 0 0 8
~~U Ill-AD ~ LrIs T Y C ’ LLO.S S I- ,.I!IIll ’;-. 1c~~ 1 1 3 -- 1 2 16 ol
IS 1N C C L S~~i.I~ I’F I- LL LSS F~ p~tIi,~r’. 87 5 1 1 1 2 0 37

I 20 IN1 S~~i-~s I LLL. .S~ IC .~I41RMI ’ . b9 2 1 2 2 1 3 25
27 4(ONI/(RG U .J. C 11 ~l1’.,Li~ Ft~~T~ou,4 81 3 3 0 14 0 1 146
28 L~.Kj P Si.~.rs t Y I - L L (. S,~ I’ L r.TRUI\ 21 1 1 1 0 0 1 7
29 ~1S1A IsL I L- C j ’:li (~~~~‘. rLR T~ A~ 20 1 Ic 0 0 0 0 6

I
3o UL DA 1” St.~ TVl-t .LLSS F~,,4~Tt4 MI’~ 7 1 1 1 0 0 1 1
31 Ol~~~ SuLI-~ T1 IL LL ’ S I-~~ I5I1(At 4 77 Ic 1 1 2 0 1 22
3~ OF~~i 19 r L .c ‘~ L ” L FLI , T R M I , 52 5 1 1 0 0 0 2Ii
i3 ORSi 1ML f L I C •~L(IL F L 1~ II lA14 12 3 1 1 0 0 0 Ic
3” 3K~~1 Su.ii 1’l F’ t.L i . SS I -L} ~T kSa F~ 2e 2 1 1 2 0 0 3I 35 OR ~~ S~~. ’. 1Y F ’,.LLSS FCk1Fo i.~, 1~~2 5 1 1 1 0 1 62
36 O R 1 Q Si - c ’~ T Y f ~tL LSS F I k I R A P , 119 5 1 3 2 2 1 143
57 CtLIICOL S’..~~J’ T Y I L L L SS F~~ 4 IkUI. 61 5 1 2 0 0 Ic 27
SF Olj T~~l-1 SLLI(T Y F [L t S S Fi.IITRAI, ~ 7 5 1 1 0 0 0 21

I ~~~~ ~~.. ,, ,‘ Tf l .LLSS F~~~TC A.., 249 1 2 1 0 5 18
•10 SIP A F U I . C ,L IC L I 1l.u~’. 2 1 0 0 0 0 7
w i Sl-fl~C’RO S.. ,~ IYI’ t ’.j ’.SS V L f : T h u J 444 1 5 2 1 0 Ic 13
4? SONI C F .~~.C. -.L” L P ‘..I ’4 l I ~ ,l ,, 40 1 1 2 0 0 0 19

I
4 3 ST~~(5_L.~ 1 fl’I LLSS I L , 4 T R A ,, 1 5 3 0 0 59
444 SlIP’ ~~~~~ ~II’iLi.SS P ~~,I~IFs U,’. ‘~ 7 5 1 3 0 2 0 47
4~ ’ S i L P , f T ~‘13~~~i 11 ” .-.L ’S j- (. I4 IISA , U 1 3 3 0 0 19
111 SlOt / I ~~L, , IY I ’ L L LS S I ’ . . I , T Pi S. , 1~~5 5 1 3 14 0 0 91
‘ 4 7 S1F~~P S,. I i~ 1 7 1 ILi .’~S FL II44I I 0 1 0 0 17

I 4 4 S(~i~flt~D SuI. III L LL~~~ I I.,~l t.. ’. 34 2 1 1 0 0 £ 14
444 Su.jVf C st’. - . I T ’ .‘ .S ’ I ‘..~~ h4h’ . 7 3 1 0 0 0 0 1
~~O II1L~~M ~ L ‘ I’ ‘flI i. ._ L ’

~~ 1 .,1I... - 44 2 1 1 0 0 1 15
t)1 TRPJ~.F~ “,. I - 1 7I ~ Li. ~~ IL’ . T e • i , ‘s 5 1 0 0 0 0 13

P 5~ Up’fl~ ”.1 ‘ ‘.. T~~ I t. ” ’ s I 9. ” I C (F , I , 2 1 0 0 0 0 3
5.~ Y~~C L I P ’ J $4. 4 ~ I’l I~~ L C . ’ ’) I L,’ I” i ’ , 7 5 1 0 0 0 0 3
5~ w8lflT S L, I’ . 1! ,~~:3 I. 1 ‘.‘- ~~. ,.,7 3 1 0 1 0 1 9
b” ~MA6 I .i,L “ C ’ I I 4.1.115 4, . - . 1 1 0 0 0 0 1

• ~~I, £ r’.P000C C ’., ,. L , ., , t I L , s l I ’ I’~ 1 1 0 0 0 0 1

I .7 Qo~~ qOr~ ~~~ ‘ I 1 1 1 1 Lt ~‘~~‘ I 4.,,1,’(,,I •“‘ 2 1 0 0 0 2 9

Figure 3.2. SQLAB Wrap—up Report

I
1 3-7

SUPROU TINE STCUTITIILE.K FORM,NAMES ,S?ATtS ,IINESI

—2 —1 0 1 2 3

STOUT
FL IGHI A B s

PRI piER4 lA BS
FOAL IiItI O

FL IE R P400
FRIpiER14 OUTCOL

CR62 HEAD
P R I I A E R 1 4 lA BS

pRI P4(flsp LSl~IP
ST IN TIlLER

PR IMER14 OUtSET
MOO
X P4IT

STaLE
.~ ii
COS
CROSS
DOT
rLF
MOO
SIN

TI V
XMAG
XMI T

STREP
MDIV
A iF
Co s
ELF
lABS
SIN
SQRT
XMI T

XM tT.___

Figure 3.8. SQLAB Invocation Bands Report

3—8

_ _ _ _ _ _ _ _ _ _ _ _

I
I
I TABLE 3.2

PATH COVERAGE OF SELECTED MODULES

I USING EXPANDED DATA SET

Expanded Data Initial Data Expanded Data

I
Module Paths Hit Total Paths % Coverage % Coverage

FLIGHT 22 27 68 81
FLIN 50 89 49 56
HEAD 53 61 41 87
ORB 2 3~ 62 16 61

I PREDATA 94 99 26 95
STIN 31 47 49 66

288 385 44% 75%

The f i rs t module for which new data was created was the data mani-
pulation routine PREDATA. The coverage for this module was increased

from 26 percent to 95 percent by adding two additional test cases to

I the original data set. This module is the largest TRAID routine (250

statements, 99 paths), and it was clear that it had not been very

thoroughly exercised by the original data set. The results were less

dramatic for other modules. The coverage for the routine that controls

the guided missile flight was increased only 3.2 percent , from 68.2 to

I 71.4 percent. ~Coverage of subordinate modules, however , was signif 1—

cantly increased.

Finally , it should be noted that a number of program segments could

I not be reached by changing the input data. Many of the TRAID routines

are general in purpose but are only used ~n a specific mode or for a

I specific feature. For example, 10 of the 63 paths in the flight control
I routine were found to be unreachable because of the main program const—

i ruction. Other paths which lead to abnormal program termination were

I checked manually and are intentionally avoided during instrumented test

runs. Path coverage results must, therefore , be interpreted carefully.

1

“ I
I

_ _ _ _
4 ERROR SEEDING

I In generating errors in the test software several considerations

were found appropriate:

I 1. To be realistic, the errors should be representative of

those found in large programs in bo th type and frequency
of occurrence.

2. The error types must be applicable to the test software

and the test environment.

3. To evaluate test tools which utilize program execution ,

I one or more errors should lead to abnormal program be-

havior for at least some test data.

The following subsections describe how error types were selected and their

frequency de termined , demons tra te how these cr iteria were app lied to
I the test software in generating errors , and present the results of exe-

cuting the software with seeded errors.

4.1 ERROR TYPES AND FREQUENCY

I Several stud ies~~
3 have repor ted on the kinds and numbers of

errors found in real—time programs. Of these, the da ta in the TRW study

I are directly applicable to the error—seeding experiment . We have used

the Projec t 5 da ta from tha t work as the bas is for the error types and

their corresponding frequencies of occurrence.

~T. A. Thayer et.al , Sof tware Rel iab ilj~,y Stud1, TRW Defense and Space
Systems Group , RADC—TR—76—238 , Redondo Beach , Cal iforn ia, August 1976.

J. Fries, Software Error Data Acquisition, Boeing Aerospace
Company, RADC—TR—77—l30, Seattle , Washing ton , April 1977.

‘
3Verifica t ion and Val ida tion for Terminal Defense Program Sof tware:
The Development of a Software Error Theory to Classify and Detect
Software Errors, Logicon HR—740l2, May 1974.

I
I
I 4—1

(1) There are several factors which limited the types of errors

which were used for the experiment. The experiment was conducted on

the existing software whose system requirements are not documented .

(2) In that there is no time—critical or interactive requirement, the

test software itself lacks certain characteristics of real—time pro-

grams. Rather the test environment has the test software executing as

a normal batch job. (3) During path testing, certain test tool soft-

ware is executed in conjunction with the test object software with

added overhead . (4) The purpose of the experiment is to evaluate the

use of test tools in locating errors in programs (not errors in specifi-

cations or documentation). Therefore, error types related to require-

ments, real—time performance, interactive usage, operating system inter-

face, and software developmental procedures were not considered

relevant to the experiment.

The project 5 data is based on a list of 79 error types shown in

Table 4.1 grouped into twelve categories. In the TRW study only cate—

gories A through H and J resulted in code changes to the software. For

the experiment, category J and error types D500, D700, D800, F400, F500,

and F600 are not applicable to the test software and the test environment.

The first three columns of Table 4.2 contain error frequency data

from Project 5. Listed for each major category (categories C and E were

combined) are the number of errors resulting in code changes and the

percent of total errors. Since category 3 is not applicable to the ex-

periment , the percentages have been adjusted to those listed in column

5. In generating errors for the experiment, the applicable percentages

were used as a goal for each major category. Column 6 lists the number

of errors actually generated for the experiment and column 7 lists the

number of errors which exhibited abnormal program behavior in the out-

put from the test software when a single error was present.

I
I

4-2 1

I
I Table 4.1. Error Types Used in Experiment

I *PROJECT S ERROR CATEGORIES

Applicable to
Experiment

A_000 COMPUTATIONAL ERRORS /

I A 100 Incorrect operand in equation I
A_200 Incorrect use of parenthesis /
A_300 Sign convention error I

I A 400 Units or data conversion error /
A 500 Computation produces over/under flow I
A 600 Incorrect/inaccurate equation used/wrong /

sequenceI A 700 Precision loss due to mixed mode I
A 800 Missing computation I
A 900 Rounding or truncation error

I B_000 LOGIC ERRORS /

B_lOO Incorrect operand in logical expression II B_200 Logic activities out of sequence I
B 300 Wrong variable being checked /
B 400 Missing logic or condition tests /

I B 500 Too many/few statements in loop
B 600 Loop iterated incorrect number of times /

(including endless loop)

I B_700 Duplicate logic . I

C 000 DATA INPUT ERRORS I

I C_lOO Invalid input read from correct data file I
C_200 Input read from incorrect data file I
C 300 Incorrect input format I

I C_400 Incorrect format statement referenced I
C—500 End of file encountered prematurely /
C_600 End of file missing I

I D_000 DATA HANDLING ERRORS /

D 050 Data file not rewound before reading I
I D lOO Data initialization not done /

D_200 Data initialization done improperly 1
D 300 Variable used as a flag or index not set /

I properly
D 400 Variable referred to by the wrong name /
D 500 Bit manipulation done incorrectly

I D 600 Incorrect variable type - /
D_700 Data packing/unpacking error
D 800 Sort error

I
D 900 Subscripting error

*From Table 3—2 of TRW Stud y

1

Table 4.1. (Cont ’d)

PROJECT 5 ERROR CATEGORIES *

Applicable to
___ Experiment

E 000 DATA OUTPUT ERRORS /

E_lOO Data written on wrong file I
E 200 Data written according to the wrong format /

statement
E_300 Data written in wrong format I
E_400 Data written with wrong carriage control I
E 500 Incomplete or msising output /
E 600 Output field size too small I
E_700 Line count or page eject problem /
E_800 Output garbled or misleading

F_000 INTERFACE ERRORS /

F 100 Wrong subroutine called /
F 200 Call to subroutine not made or made in /

wrong place
F_300 Subroutine arguments not consistent in /

type, units, order , etc.
F 400 Subroutine called is nonexistent
F_500 Software/data base interface error
F 600 Software user interface error
F_700 Software/software interface error I

G 000 DATA DEFINITION ERRORS /

G_lOO Data not properly defined/dimensioned I
G_200 Data referenced out of bounds I
G_300 Data being referenced at incorrect location I
G 400 Data pointers not incremented properly I

H_000 DATA BASE ERRORS I

H lOO Data not initialized in data base I
H 200 Data initialized to incorret- t value /
H 300 Data units are incorrect I

1 000 OPERATIO N ERRORS

I_lOO Operating system error (vendor supplied)
1 200 Hardware error
I_300 Operator error
I_400 Test execution error
1 500 User misunderstanding/error
I_600 Configuration control error

*From Table 3—2 of TRW Study I
I

I
I

Table 4.1. (Cont ’d)

PROJECT 5 ERROR CATEGORIES *

I App licable to
_

Experiment

I J_000 OTHER

3 100 Time limit exceeded
3 200 Core sto rage limit exceeded

I J 300 Output line limit exceeded
J_400 Comp ilation err or
J_500 Code or design ineff ic ient/not necessary

I J_600 User/programmer requested enhancement
J_700 Design nonresponsive to requirements
J_800 Code delivery or redelivery

I J_900 Software not compatible with project
standards

I
K_QUO DOCUM ENTATION ERRORS

K lOO User manual
K_200 Inte r face specii~ication

I I’Z_300 Des ign spec if i ca t ion
K_400 Requirements specification
K 500 Test documentation

I X0000 PROBLEM REPORT REJECTION

X0001 No problemI X0002 Void/withdrawn
X0003 Out of scope - not part of approved design
X0004 Duplicates another problem report
X0005 Deferred

From Table 3—2 of TRW Stud y

I
I
I
I

II

w 4 J
4.4 5
U)

I_I ll-I S
—. 0~~.-I O
N- 1.4 ~~ N. C~ C N- -.7 -.7 U) I U”

I ‘.7

a)
1~4

e C a

‘.0 0 a) -.7 U’~ 0’ 0 t — U) Cfl I ~.0
‘—‘ 1.4 5 .-‘I (N -~ I U)

a)
-I
~01.4 (‘3

S C)
U) i—’ a) ~~

..7 U) ~~~ C’) U) 0 U) I 0
a) trl C) .-4 ,-l (N -~l ~ 4 ~ 4 I 0

~1-4 ‘~~~ 1 4 1
1.4 W I
o
00
a) — —4.4
Ca 0o ‘I

14 a) 1 J
o

~~ 1 .~~~ a)
Ca Ca~~~X .. (‘J~~rl U) U) U) U) U) U) U)

-.7 .-I 1.i a) a) a) a) U) U) U) 0
S ‘-‘ ~~~~~ >5 > 5 >5 >5 >5 >’ > 5 5

o.x
>5
U
S — _ _ _

a)

~ “ Ka) S U)
14 ~~. 0) 14 U) 0 0 as (N 1I~I 0

rn U ’1-4 O . . .
‘~~~ 14 0 1” (N -.7 N- N. U) ‘.0 (N 0

1.4 a) 14 ~~ (N ‘-I ,-I ~-I 0o
14 >5

— 1.4
U)

c-I i.14e

r-l W 1.4
~

.
~~) 0 (N 0” itt ‘f t U) (N (N ~O CI 11,4

0) (N 1.4 0 1.1 Cs ‘.0 itt ‘.0 -.7 ‘.0 ~—I U) U) o
.4 ‘‘ O~~~~~ 14 . 4 “0
Ca

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _— _ _

.5 U
S
Ca

Ca
~~~‘ “ ‘ ‘  ‘ ‘  ~~~‘

~~~~~~~~~~~~~~~~5._~ .__ 5-’ 5-~ 5-,’ 5- 5-~

1 4 U)
O W 5

0
C a 1 4 .-4 1.4 00 .,.

~Z O Ca
0 5 0.~~~-I ‘,-I
a) 0 i.J 4 . 4 —I 5 .,.

~(P1 1.4 .,.
~ 5 5 . 5 a) .

~.4 U)
Ca 1.4 n . o S U i4.~ U) U)

.-I IJQ Ca S CO Ca 0) Ca
5-’ C) 4.4 I-I Ca ~~ ‘44 ~~0) 1 4 5 C) 1.4 Ii 14

~~~~O 5. •rI CO Ca CO a) CO Ca 0) 4.4
0 1 4  H 00 1.4 ~~ 1.4 1.4 4.4 1.4 .514 14 0 0 CO tO S CO CO 1)

~4 I a~ C.) ~~ ~~ ‘-I ~~ ~~ 0

I
4-6 1



I i
4.2 ERROR GENERATION

I In addition to generating errors whose type and frequency have

their bases in a published study, the location of each error and the

I 
program’s resulting behavior were also prime concerns in maintaining an

objective experiment. In the TRW study, no data linking the error type
to software property (e.g., statement type) is presented. Using the

I error type made it necessary to establish correlations between each

error type and quantifiable test software properties. Furthermore,

since the test object consists primarily of general ut i l i ty  subroutines ,

many having alternative segments of code whose execution depends upon

their input parameter data, we felt that the errors should reside on

I segments of code that are executed by a thorough (in terms of program

function and structure)  set of test data , and that the errors should

I manif est themselves by some deviation in the program ’s normal output.

To generate errors with these properties, the following steps were per—

I formed .

1. The test software was analy zed by the test tool1 to classif y

I source statements , to obtain software documentation refer-

ence material (e.g., symbol set/usage, module interaction

hierarchy, location of all invocations), to guide insertion

of errors , and to generate an expanded set of test data that

I provided thorough path coverage. The percentage of path
coverage varied from module to module depending upon the

I main program’s application of the utility subroutines.

2. A matrix showing error types versus statement classification

I was manually derived.

3. The information from steps 1 and 2 was combined into a

I matrix showing potential sites in the software for each

- error type.

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _

1D. H. Andrews and J. P. Benson , Software Quality Laboratory User ’s

I Manual, General Research Corporation CR-4—770, May 1978.

I1



4. From the potential site matrix , a list of candidat e error
sites was randomly generated .

5. At each site in the list either an error of the designated
type was manually inserted or the site was rejected as being

unsuitable for the error type.

6. Errors were eliminated from the error set which caused a

compiler or loader diagnostic.

7. The 86 errors shown in column 6 of Table 4.2 were selected
from the remaining errors using Project 5 error frequency

data. Errors from this set were eliminated if they caused

no change in the output. Fifteen errors were rejected due

to lack of coverage with the test data, and 22 were elimi-

nated for which coverage was achieved without affecting the

output. The surviving 49 errors, shown in column 7, were

used .

Error site execution or reference was verified by an output mes-

sage placed, for the case of executable statements, at the error site

or, for the case of non—executable statements, at the site of reference

by some executable statement on a covered path . The impact of this
evidence is that path testing with the sole goal of execution coverage

is not an adequate verification measure. Most software tool developers

whose ver i f icat ion tools include a path testing capability advocate
their usage with data that demonstrate all specific functions of the

software. Even then, stress and other performance testing should enter

into the total test plan.

4.2.1 Error Seeding Preliminary Analysis

Using the SQLAB tools, the original test software was processed

to generate standard documentation and static analysis reports. The

reports include the following:

4—8



I
1. A list of the software properties of each module with a

I count of each statement type and the character istics of

the interface

I 2. A listing of the source for  each module in the test software

3. Source for all invocations to and from each module

I 4. Local and global cross reference lists indicating usage for

all names

1 5. Path identification for each DD—path in each module

I 6. Hierarchy relationships between modules

7. Static checks on variable usage.

A master list of test software properties was constructed from item 1

and the linkage established between each software property and the

I error types. The linkages together with the data for each module were

used to select candidate error sites. The other reports were used to

I generate actual errors. The following subsections explain how this was

accomplished.

4.2.2 Software Property and Error Type Linkag~

I 
The master list of software properties constructed from item 1

(see Table 4.3) reflects the dialect of FORTRAN used (e.g., DECODE and

ENCODE) and the statement types used in the test software (e.g., no

I DOUBLE PRECISION or PUNCH statements). Additionally , the list includes

only those statement types relevant to the experiment (e.g., comment

I statements and END statements are omitted). Two interface properties

are included , Parameter and Invocation , although there is some overlap

I with other constructs. The linkage between software properties and

error types was established by listing, for each error type, all software

I 
properties that could be the site of an error of that type. These

linkages are shown in Table 4.3.

I
I
1



-
~~~~ ‘S~~~

.~ 0019 “ . ‘S - ‘S - 5 ”. -U
S

00
____ _______ _____ ____-

~ OOLA ‘ -. .
~~~~~~oota ‘S -0 ‘i” OUU ‘S

00t4 ‘S ‘~ ‘ ‘ ‘S ’. , .’S -
‘ , ‘S ’.

~~ :.~~~i::~ ~:~~~: ~:0090 — - “.‘~ - ‘ - - ‘S
.., “ — - ‘ 

- - ‘ S  - -‘ . - “. ‘S ‘.e 
~~ 

0090 “. _ S  _S~~~ 
-
‘ ‘, ‘ S —S “. ~.‘S • . ‘5 ‘S “. - . ‘~~‘S 

- - “- -s ‘‘S -s ‘ S _ S  ‘S’S1-4 ~ 
ooi~i ~~ 

- _ ‘ S _ S  ,‘ .
~ - . ‘ S ’ S  ‘S - . ‘S ‘S

‘S -~~~ OOZQ
~ 0010 ‘S

• ~~ 0.00 ‘S ‘S _______

0
-.7 00L3 ‘- ‘S ‘S -~

-‘ 0091 _S 
‘S00c3 -~

“a’ 00~ 3 ‘5’ 
‘S001.3 ‘S -~ ‘-5 —5’

1-4 ~~4 00Z3 . 
‘S ‘S _ S0 ~ 0013 —. ‘ ‘S ‘S ‘S’S00 ~~ .___ .___~~~~~~~~~ _ _ _  _ _ _

0093 ‘S
~~ OOW —

00~9 
~ ‘S00t3 ‘S ‘.5

00C3 ~~ ‘S ‘S0013 I -
~(I)

- ootg ‘S 
‘S ‘S ‘ ‘ ‘S ’ S

00 0093 ~~ ‘S.’. “.‘S ~~‘S _ S  ‘S ‘S ‘S

0 00C3
I—I 0011 ‘5 5’ ~~‘S’S ‘ S __S ‘5 ‘SI-I 001.0 ‘S ‘S ‘S ~~~~ ‘S ‘S ‘S ’ S ’ S  ‘S ‘S ‘S ‘SI oo~~i ‘s ’S ‘S ‘S”.’ ~~‘S’S  ‘S ‘SOOtV ‘S ‘S ‘ 5 ’ S ’,, ‘S’S

— 
~-‘000~

•
~ -. ‘- ~~~~~ c ” c- ‘ 

~~~~~~~ ‘S ‘S ~~OOUY ‘S -
‘ ‘“ S _ S

00LV ‘S ‘S ‘S ‘S ‘S ’ S ’ S ‘5 ‘S ‘S
009Y ‘S ‘S ‘S ’S ’ S

~ oocv ‘S ‘S ‘ S ’ S _ S ‘S ‘S ‘S
‘S

009V ‘S ‘S ‘S ’ S ’ S ‘S
I OO(V ‘S ‘S ‘S ’S ‘S

I OOtV ‘S ‘S ‘S ’ S ’ S ‘S

J. OOTV ‘S ‘S _________ ________ ‘S ’ S ’ S _ — _ ,_, ‘S’S

~~ Ihd JEI~ ~ III~ ~~ hh ~lI~
I

4—10

I

The linkages were manually generated. In some instances, syntactic

I and semantic rules for FORTRAN were used to determine entries. For exam-

ple, any statement type in which an arithmetic expression is permitted

I
(e.g., Assignment, CALL , IF) is a possible site for an error in the com-

putational category (error types AlOO through A900). Similarly , FORMAT,

READ, PRI NT , WRITE, DECODE, and ENCODE statements are possible sites

I for input and output error types in categories C and E involving data

conversion.

I
- Other entries in L,’ie table indicate s tatement types which are

I directly associated with an error type , although an error may involve a

combination or sequence of statements including other types not marked .

For example, error type 8500 (too many/few statements in loop) is dir—

I ectly associated with a DO statement (marked in the table) combined with
at least one o f any other executable statement (not marked).

I
In some instances , entries reflect how the test software proces—

I sing is accomplished , although it may not be a common usage of the lan-
guage. An example of this is the usage of assignment statements to

I construct variable formats, thereby linking the Assignment Statement

type to error types C300 (incorrect input format) and E300 (Data written
in wrong format) .

4 .2 .3 Candidate Error Site Selection

I The method used for error selection attempts to be realistic by
utilizing published error types and frequencies (Table 4.2) while remain—

I ing objective by selecting placement by random. The test software con-

tains over 50 modules. For each module, data shoving the count of each

I software property was collected from SQLAB reports (see Sec. 4.2.1) into

a matrix of the form shown In Fig. 4.1: This matrix, when combined

with the mat r ix linking software property to error type (Table 4.3)

I yields a matrix of candidate error sites for each error type in each
module. The form of the candidate error site matrix as shown in Fig.

1 4.2 Is sub—divided according to major error category.

1
4— 11

I

-
~ .,4

‘4
0 4,4

Ca
- x

a)

—4
‘ 00

‘ 14— 0
- 1.4

—
~
. 14

‘U
a)

S 4.4- 10
• ‘5- ‘i-I

‘
3

S • C.)

(N
.

-.5
>5
1.4
1-i
U

0
14

U
‘.4

~j~~~ 4
4.4 14-r O ,~~, 0~~

_ _ _ _ _ _ _ il

- ‘

4-12

-

~~~~~~~



I
I

For each major error category a randomly selected list of candi—

I date error s i tes  was generated using a simple computer program to per-

form the necessary computations for site selection . Input to the program

I consisted of the following data:

1. Error Category and Error Type List (Table 4.1).

2. A list of Software Property Names (See Table 4.3).

3. A list of Module Names (from SQLAB reports).

4. Error Category Frequency (Col. 5 of Table 4.2).

5. Software Property and Error Type Linkages (Table 4.3).

6. Software Property and Module Matrix (from SQLAB reports).

1 7. The number of error sites to generate.

8. Possible causes for each error type (statement sequence

I omitted or extra statement , input data)

I The site selection program contains no algorithms to reject a selected

site which is unsuitable for a particular error type (e.g., an assign—

I ment statement without any parenthesis for error type A200, Incorrect

use of parenthesis). To provide for manual rejection of unsuitable

I 
sites , the number of sites was chosen to be twenty times the targeted

number (50) for the experiment , or 1000 sites.

Output from the program consists of a list of the randomly selec-

ted candidate error sites for each major category . The number of sites

I generated for each category is proportional to the error frequency for

the category , with the total number of sites equal to the desired number.

I The output for each candidate site identifies the site by module name,

softwa re property , the p roperty ’s sequence number within the module, and

I the error type with its description. In addition , the possible causes

for the error type are listed. Fig. 4.3 contains an excerpt reproduced

from the output for major error category A , Computational. How this

I list was used to generate errors is explained in the following sub-

section .

I
I
1 4—1 3



‘U0z
‘U

z 0’
O ‘U 00
H 00 0 H
H

0
Z ‘U 1-~0’ 0 H to

‘U Z Z
0 ‘UZ ‘-. 0 ~~ 0

H Z H ~ < ~ a)
0 < 4.4
H 0 ‘U ‘UH Z 00

z 0 Z
H 0 0 14

‘U H — ‘U H 0
H 00 H
Z ~ Z

O 0 ‘U ‘U ‘U
H H 0 ~~- 1-’ ~H O  0 Z 0 Z 0)

‘U 0 Z C ‘U 0 4.4
Z 4-4 0 ~ 0 Ca
H ‘50 0 11) Z Z 0 Z --4

00 0 00 0 0 0  ‘5
‘U Z H 0 H Z  H S
~~~~~~l-4 Z 00 H 00 Ca

0
Hz
~~~ ‘4

‘U
4,4

0 0  0 H O  C O O
~~ C ‘U C ‘U 0 0 0  ‘U 0 0 0  14

H 0 ~~ 0 Cs 0 c”~ N C”) a)
li-I < Z < Z -~~ -

~~ Z < < < C)
Z ‘U ‘U ‘U0 ~~ H ‘U
H 0’ 0’~~~~ 0’H ‘U ‘U ‘U ‘UC/) 00 Cl)
H

1-’ H O  H
Z Z Z -~a ‘U ‘~0 ‘U 1-4 I”) ‘U ‘4Z I”- H H H H H H ‘.0 ‘-4 —4 5

O < < H  < 00
O H H Z  H
O F-’ Cl) 0 0 0 Cl)

‘U Cl) Cl) 1/) Cl)
H H 4-4 H

0
0 ‘U ‘U ‘U 0 ‘U

‘U H Cl) Cl) Cl) H Cl) ,-~ 1-4
0 0 0 0  H 00 ~~ 1/) ~~
‘U ‘U H U) < rL~ -~~ < 0 0 <  < ~I4 lx.
H H Cl) < O H  0 0 < 0 0  H H
H H
Cl) Cl) ‘U ‘U ‘U ‘U_~1 ,-~ ~) -~‘U -~ 00 0 0 0 0  00
H H H 4-4 H H

0 0 < 0 0  CI) C/)
~~ H ‘U Cl) 1-’ 00 1.1) CI) I-)
H O  .-J 0.. 0 < 0 0  O X

~~~~~~~~~~~~~~~~ 
:~~ : :~~ .)H ~~~~~

0-. ~~ 0.. 0.. 0.. 0 Z 0..
H • H H ~~

0 Cl) Cl) • 0.. • H • Cl) 0

I
4—14 1

r’

I
4.2.4 Error Se t Genera tion

I The task of genera ting a representative set of error s for the
experiment consisted of three major steps:

I Step 1. Using the candidate error site list as a guideline , a

set of error packets was created which contained a sel—

I ect ion of errors in the desired freq uency for each of the

major error categories.

I Step 2. Error packets resulting in comp iler or loader error
messages or warnings were eliminated from the set.

I Step 3. The acceptable error packets were applied, one at a time ,

to the source program and the resul ts of e~ ecuting the

I erroneous program analyzed and classified for later use
in the experiment .

I These three steps were repeated one time to obtain the final set

of error packets used in the experiment .

I
Error Packets

I Step 1 in this process was performed by repeating for each major
error category the following sequence until the desired number of errors

I were genera ted:

1. Choose the next (initially, the first) site in the

I candidate site list (See Fig. 4.3).

2. Locate the site in the source progr sm listing (e.g., the

I seventh assignment statement in STREP). Reject site if

previously accepted; otherwise , continue .

I 3. Determine if error type is applicable to site (e.g., Would

a change in operand be a likely error in the statement?).
If not , reject site; otherwise , continue.

I
I
i

4—15

4. If site is an executable statement , determine whether

statement was executed with test data using coverage re-

ports from test software coverage analysis activity

(Sec. 4.3.2.2). If site is a declaration statement , deter-

mine , if possible, whether information in declaration was

referenced by using coverage reports. Accept site and

continue if criteria met; otherwise, reject site.

5. Generate error packet for acceptable site and mark site

to avoid duplication.

Each error packet includes the following items :

1. A unique , randoml y selected packet identification name.

2. A code change constituting the error.

3. A print message iden tif ying on the output the error by

packet identificatIon name (added as the first executeble

statement of the main program).

4. A comment statement identifying the error site and type

(added at the error site).

5. A print message to record when the module containing the

error is entered (added as the first executable statement

of the module entry).

6. A print message to record when the error site is executed

(added at the error site or at the location where the

error is effective).

An example error packet is shown in Fig. 4.4. The system utility

UPDATE was used to manage the error packets. Each item consists of one

or more UPDATE directives (first character is *) and FORTRAN source text.

The UPDATE directive serves to identify the packet (*ID) or to insert

test (*1) or delete and insert text (*D) at a designated place in the

4—16

5’-

I
0)

0~~~~I-.

I
4,,

0 I 0)
0 4) 4) 6) 4) 4) 4)

>5 >5 >5 >5 >5 >sUI‘0
0) “'IL I

“I4. 0 1o

I “i 0) 0) (0 0 0 00) 0) 0) 0 0 0
>5 >5 >5

0
0
‘-4
4-4
IC

0) U
00

54-’
0) -5,
(I) 4-,
4) 0 4.4O 6)

‘0
0 0 -—o 0 U-

~~ ~~, 10
0) 0. ei >5 0..U L~ I,) 4,4 4)

--4 00 “I 00
54-,)_ 54,~ I., 4) (4

6)’ 5’) 0 00 0) 04,4 4-’ 1,~ 0) (4
0 0 0 4.. 0) 6)4) s’I 4) 6) 0) (4-

~~

0 4) ‘U--I 4.4,4 -~~ 4. 0’I” 0 0
4’, ‘4 (6 >s “40 4) 4) 4) 4.

01 ‘~~ 0 -~~ 0) 4’4 3
U ‘.4 U ‘4 0 U —(4 — (6 -.4 4) 4) C

4.’ 00 4., 1.

0,
~~. 0) x Ca—4 4) 4) 6) C/)

0 0 0 0 3 0)
‘4 ‘~ 44 4 ‘0 ‘4
$‘~ ,0 4,, 1. 0 ‘-4C 4)) 1-) 4)) 4)) Z

5;

a)
14

N’ S
o 00o H

-4. lx.
N’ 00o 0
O
4))

C
00 4))

C
0 0 Is)
-I

Is)
I’)
F” Is)

4 r—. z 4-’
N’ 4)) ‘4
0 I1~0 I—
(SI

C
00 0 Is)

Is. .-. N ’ . N’ -
N ‘t S r — Is) V(0 - 0 -
< -IC U~ 0 - 0 -

00 - 00) 0 0 ’ 4 0 0 0 0) 0 0 0 0)en i e’~ ‘-, en (‘-4 en ‘, en C’-)
N’ - 4- - - 4-, . 4”.
0 Q . .’ - I Q 4- < 0 . 0 . 0. ’.-
0 t~~en ~~~~ I s) P~~~ I44~~~~~~~00 ‘— —4 s” 00 0 0 - r n d 00’.”00 4 - 0 . 0 0 0 00 4 - 4 - 4 - 0 0 0 4 - 0 000 1 ~ (I) 0. 0. 4). (1) 6)) ~1 0, £s (/4 0

W I N’ N’0
1

N’
0 0 0
o — 0) -‘ 0 -_ — 0 — 0

• 4) 4) (‘4 4 0 • en 0) (‘4

“ ‘.“ en ,~

“II-

I
4—17

- p

test software. The set of error packets was placed in ascending order

by the (randomly selected) packet names before input to the UPDATE

utility.

The complete error packet was used to analyze the effect of the

presence of each error prior to use in the experiment. For the experi-

ment only the first three items in each packet were used to modify the

software. One or more error packets were selected , then the source of

the complete program including the errors was made available to the

tester in a form which concealed the site and type of error (See

Secs. 5 and 6.

Compiler and Loader Qualification

Step 2 in the error set generation process served to eliminate

from the error s.~t those errors which were revealed by the compiler or

loader. The complete set of error packets was applied to the source

program and the erroneous source compiled and executed. Error packets

which resulted in compiler or loader error messages or warnings were

eliminated from the set. A warning of an unset variable is an example

of a compiler message which caused rejection of an error packet;

similarly , an unsatisfied external warning by the loader caused re-

jection.

Error Analysis

Step 3 was to analyze the effect of the presence of each error

during execution. The test software, with one error jacket applied ,

was compiled and executed with the sample test data obtained from prelim-

inary coverage analysis. The output was then examined for print messages

from items 5 and 6 of the error packet. In addition, comparisons were

made to normal program output obtained by executing the error—free test

software with the same data. The results of each error run were

classified in one of the following categories:

a
4—18

- _ _ _

~

1

4 0

- I a)
H C)

S
0) 0 0
‘0 4 . 4
o to
E

~~~~

4 0)
‘ 5 0 )N

00 Cl) Ca to

~0 ..
~ ~~ 0)

Cl) 4,)
E S

0~~~~~ ’ 0) 5
14.4 0) 4,) 00 0

C O O  S Ca H
0 ) 5  H 0 0. U
to 0 ) 0 )  4.) 5

~ 

to .0 5 • H
H 0

to 0 4-4 14 • p”, 01) 4.)
5 S H  0. 4-4 H CO
0 0) 0) .5 H
S on on 4) 0 0 1 4  C)

H I .)  ‘5a ) H  S H U 4) 01)
14 U U U Ca 1 4 U
Ca S Cl) H S B H

0 0) 4-4 4.4 H 4) 0 5Cl) 4.4 H Ca 5 14 14 4.) Cl)
I.. S ) . .  H 0 . 0 . 0 .  4)
a) H 5 U ‘0a) ) 1.4 14 . 0

HJ 0) 0. 5 0 0. 0 . H  BB Ca 0 0  H 0
01 Ca ~~ 0 5 0 4 J  Ca 1..

1-~ 1.) w 0 H to u- ‘4.40.9 Ca 0 0. ‘00) S 0 ) E  B E  U)
4.4 1./ C) 4 ) 0 0 1 0 1 0 1 0  Cl)

U 0 ) 1 4  I I I H Ca 14 1-4 1-’ H
H -r-~ a) I I I 0 0 . 0 0 0 0 0 0 0  1-1

4,4 . O C a U  I I I 5 1 4 0 0  0 U
51 14 1 4 5  I I I 0 Ca 1-1 14 1-i SCI 0 1-’ H I I I .-~1 0 0 . .  0.. 0.. ‘U

.5
a)

.0~~~~~~
a) 0. 0)
1.1 0 4.4 H

a)
0.1 4.4 0 Cl)
0 ) 5

I,J X U t o
U a ) w S
a) ~~~ 0 Lñ

(4-4 0 ) 0 ) 0 )

I ‘ 0 4 ) 1 - .  4)
0 0 H 1 4  1-iS E t o G )  S(1) 1 00

‘01 11 11 11 11 H
0 1 H N Cf’) -~ -~~ -~~ -~~ C”’) N C’~ ‘.0 -.0’ -.0’ -0 -0

I
I 0~ H N cfl -.0’ if’) e.0 N. H I~- cC’) ~~0 0 0 0 0 0 0 N (N If’) U)

0 0 0 0 0 0 0 0 0 0 0
lx) ‘U 1 4 1 4 1 4  ‘U ‘U ‘U 14 ‘U 14

I
I

4—19

- -



1. No observed e f fec t  on normal output.

2. Module containing error executed with no observed effect on

normal Output.

3. Module containing error executed and error site executed

with no observed effect on normal output.

4. Module containing error executed and error site executed

with error manifested by differences in error run output

from normal output .

Errors in category 4 were used in path testing portion of the experiment.

Errors in all categories were used in other portions of the experiment.

For errors used in path testing, a “user complaint” about the erro-

neous output was prepared. The output problems included not only prema—

ture termination of program execution, but also discrepancies in user—

expected program behavior, output format, and numeric results. Selected

entries from a list of error packet names and results, prepared for use

in the experiments, are shown in Fig. 4.5.

A total of 86 errors were generated; of these, 49 errors were mani-

fested by erroneous output. A breakdown by error type is shown in Table

4.4. These are also summarized by major error category in Table 4.2

together with the error frequency data.

Table 4.5 shows the distribution of errors by software property

and major error category ; the total occurrences of the software property

in the test software is also shown. Each non—blank entry represents a

statement property linked to a major error category. Each non—zero

entry is the count of error packets generated or manifested in the output.

Table 4.6 shows the distribution of errors by count of error pack-

ets in single module and cumulative error run results. Of 57 modules In

the test software, 86 error packets were generated in 33 modules. Ten

4—20



I
I
I TABLE 4.4

ERROR RUN RESULTS BY ERROR TYPE

Error  Er rors  Er ro r  Errors

I Packets  M a n i f e s t e d  Packets Manifested
— Category Generated in O u t p u t  Category Genera ted  in O u t p u t

A. Computa t iona l  D . Data H a n d l i n g

I AlOO 2 2 D050 1 1

A200 3 2 D100 1 1

: :

I A600 2 0 D600

A700 D900 1 1

A800 3 2 10 7

I A900
F. Interface

F 100

f B. Logic F200 4 2
U BlOO 2 1 F300

B200 7 1 F lOD 3 2I 
:~~: 

~‘

I B500 5 4 G. Data Definition

B600 2 1 C100 2 2

B700 2 0 G200 2 2

I 25 13 G300 2 0

I G400 2 0
C/E. Input/Output

8 4

I C100

C200 2 2 H. Data Base
C300 Hl00 3 2

I C400 H200 5 2

C500 H300 5 4

i C600 13 8

I

I -

L.400

E500 1 1

I E600 4

E700

I
4—21

-—
C’
— - — - - - ——- - 5,- - - — -~~~~~~~~~

-(_--_—_--_- _ - — -5— —,—..— ~- - — - - — - - — — - - - - -



o en O c o o Q, ,’ . . .C . , -’ C C C C . ’ iC C~~~~0 C ~~~~N ’ C C CC .’ . 0 ’—’ ’ — ’ 0 C C  c.1- 00 0’.

= C- C e’~ — C C C 0 en 00

I 
~~ c c  C CC ~~~~C C C  C C CC C C  C C  C C C’-) sO

~~~~~~~ I . .;_  C C C C C C O C  C C  — Z C C  ‘4)

S
C . ” I C O OC : — ‘ C C - ’ C C C C C C O C — C C C C C C — 0 0 N’

4

C
.

0 C 0 C- C C C .“i O ‘0
Is) 0 ,

C C C C C ‘ $ C C C 3 C — ’) C C C 0 0 0

— -, — -~ z 0 (--4 C’,

— en o C - O c . . . 0 0 .~. . Q o . .o o ,4) o 0,~~O0 , . ., o o o o o . . .o~~~~_ o o _ en~~~ ‘0
~ C- .‘~ —(00

~~~ 
- C

H — “~~~~ “‘____ ~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _ _ _ _

Ii..
If’) ~1’. C -‘ .- C’ C C -~7 C”

W I .

0 .4’ — 0  o oo o c  C o  C C C  C C C  0 0  0 C C” )  00

0
I.. -. 0 0 0 0) C O O N ’  C O  -_ 0 00  C- N’Cl)

1-4 ~~9 C .- 0 - 0 00 0  ~l’)0C.-. O 00  0 0  0 0 0— O C O C o C  — C O  0 C

~ 4-4 4

lx) 0 4 -  Is)
0. 0 “-~ C- 0 0 0 ‘~ C 0 ‘ ,“) “4 0 0’‘In 0
( C S
I s X
0
I- I’. 00 .-1 0 0 . - 4 0 0  1(4 0 —4 o ’ s Oo — o  0 C .‘. 0 0 00  ‘I’.0  — C-Is) ’...

00 — 0 0 0 001”  0 0 0) C C-  ‘4)
—t~~—  

— _ _ _ _ _ _ _ _

(0 04)
04 “1I,) CI
C O
4)
Is 4.4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘4~~~ —‘Is (0 IC C”) ‘/4 .41 -i 0’. ~C 4(4 0’ en U’4~~~~.-. en ... .-. 00 — 1’.) ,-4 en ~~ .4”. .4) 104) 0’ (--4 en en .-4 .41 a..1,4 4 -  CI) F—
C C

--4

Is,
4)
C 0 0 — Is.o 1— 4-Is C Is) Q ‘.~~~ IJ
0. 0 0 0 I C , C 0 . . Is) C

-) C Is) Z Z ‘4’I IO IJ I’4 Z 04 I s O

~~

‘
~~~~~ 2 ~i-~ ~~ W.- 00 .4 ~~ 

— 
‘0 -~~~• B CZ 0 .  Z ~a Z  14) 44) Is) < z 4 - ’ - ’  C 0 I I. W I 4 ) ’~ C 4.’. 0 4 0 404 00 0 1 4 ) 4 ) Q 0 .” .  C Z  0~~.> ’ 00~~~~4 - 0 0  0 0 4 . 0 6 ) 0 0 4 - 0 0  0 0 Z  014) I. B 6 )

4’) a.) ~~~~~~~~~~~~~~ 0 - 4 -~~~~0 ’4I 0 0 0 I - .I s ) x U — 4 0 0 4 0 4  I ‘.‘) Is) C’~~Z 00..) 0) -’ 0 1 . 0 0 4-  4) 0 4 04.. 14 0 4 C 4 ) U .~J Z B Z 4 - 0 X  O 4 -~~~~4 - 0 0 Z ( 0 4 -  4 - Q~~~~~~4- Q’-~~~O < ~~~~~~4-~~~~~~O 0 0 ’ - I  .a I s >0 a.a 14~~~~<~~~~0 0 O<  Q Z Z O ’ > C C p ( 0 Q C I s .0~~~~o Z O 0 0 0 0 O I 414) C.J 4-.~~~ X 01 0 4 0C)) Cd) < < 0 0 O O O O C C C C 1 s)4)~~~~~~~~~ 4-4 -’..) I’4 . , ) 0 . 0 . 0 0 0 0 0 0 0 0 u)v) 04 — 0. 1-’

11
I

4—22



I

“ ‘, .  
.-4 0 ’.O .04 0 

~~

—4 ‘4 Cd)
0 1 0 4 )
(0 0 ‘-4 0’ C- -‘I C”) If’ ,04I x ’ —~ — (‘1 ‘04

‘0
Isa 0
0 X
I.
I.
Is)

I -v
04 (1)
1.4 ,”. I)
C ‘-04 0 00 (N 00 •(‘. 00 — In
6) .4) Isa ,, ~ ,“d .‘ “I C”, 00

I X Cs)
Cl)
‘U

‘-‘ 0
441 0 0 4 )

I 0
• X 0 C c a’ ,

~~ (N — en —
— C”) ‘(4

Z
4-4 Cs) X

Cl)
‘0I

I’.14 )C sU 0 00 -r 0- ~C ‘~j r- 00 ‘~~ 00

I ~~ ~z. — 0’
~ 0 ‘ 6 )

4) IN I..)

I
C O OCl) 
~~~~~~~~~~ 

-
4—4 1-. -

‘ .

I w en 0 0 -1 0’ IC (N N’ 00 ,c
0 • I a —“ ‘ 4 00 C’
44 C - I s a —C - C a)

U)

I ‘ 4 (0 10
0 4 4 4

,

(. 1 . 4) 4’.
(0 0 4 4 I
0. 0 0— 0 C- 1” -~~ C (-‘1 - - — - en 00

— In .4”
I. i.a ’~ ICI 0 1 0 0 00
I s’—

Ca) IC ~ c
- -~~~~~~—‘ F< .~~

If 40 40
1. 1.

• 4) ~~~~-‘ ~~~~~~0 —
• C, C I’. CU :- ‘~~ ~40 0 4 ’ — (-‘I In .04 .4’, IC C”. 00 - c -~ cI E

O C
6) 0

I
1 . 0 - 0~4

‘10

I
4—23

- S ~~ .-~~~~~ ‘- -~~~~~~~~~~ ‘~~~5, ~~~‘ --- - -

modules had only one packet and no modules had more than eight. During

single—error runs, modules containing 84 of the 86 errors were executed

in 31 of the 33 error—seeded modules (two were contained in error—

recovery routines not executed for the sample test data). The error

site was executed for 71 of the 86 errors in 29 modules; but the error

was manifested by the output in only 49 of the 86 error runs in 25

modules.

Note the large drop (22) in the number of errors manifested in

output from the number whose site was executed (49 from 71). It is

not uncommon for software containing errors to produce the “right” out—

put even if the site of the error is executed. Upon analysis, these

errors, although potentially dangerous, proved to be harmless in the

test environment. For example, one caused calculations to be needless-

ly repeated , another preset data which was later reset before being

used, and a third performed calculations whose results were never used.

All three of these errors were time—consuming errors which could affect

real—time responses. Table 4.7 lists the reasons these 22 errors re-

sulted in acceptable output .

TABLE 4.7

CATEGORY 3 ERRORS (SITE EXECUTED)

Reason Error Not Manifested Number of Errors

Variable value(s) acceptable 8

Variable reset before use on path taken 5

Loop executed only once 3

Statement sequence has no effect
for path taken 2

Timing not critical 2

Variable not used after set 1

Input data complete 1

22

4—24

-- —- ----- —---

I
p

_________________________5 SINGLE-ERROR EXPERIMENT

5.1 DESCRIPTION

I Errors from the seven major categories were seeded , one at a

time, into the FORTRAN program according to the frequencies shown in

Table 5.1 and FIg. 5.1. For each error the analyst was given a compi-

I lation and execution listing which gave no clues to the error’s loca-

tion. He was told what was wrong with the output and had , as a specif i—

I cation of the proper program performance, a listing of the correct output.

The task was to find the error using execution coverage analysis (path

I
testing) or inspection, whichever seemed more appropriate , correct the

I source, and execute the corrected program to verify the output . Human

and computer times were accounted for from the time the tester re—

I ceived the erroneous listing to the time he delivered the corrected

listing.

To evaluate the types of errors detected by static analysis, all

1 49 errors were simultaneously seeded into the program after determining

that they did not interfere with each other in the static sense. Only

one computer run was required for this evaluation.

I
Unlike static analysis, which explicitly detects inconsistencies

and locates the offending statement(s), path testing is a technique

that demands skill to interpret the execution coverage data as well as

I to recognize improper program performance from the program ’s output .

(5.2 PATH-TESTING PHASE

For the path—testing evaluation phase, we found that the erro.~s

I were located using three detection methods : path testing alone,

inspection aided by path testing, and inspection alone. Some errors

I
were easily detected without the necessity of instrumenting the code

to get path coverage. Some errors were found when the path coverage

reports narrowed the search to a set of suspicious paths——but then

I
I 5—1

COMPUTATIONAL

________________________ 24. 5LOG IC I 28°~

INPUT /OUTPUT 7.8~

DATA HANDLING

INTERFACE 7~

DATA DEFINITION

DATA BASE ___________ 16.2%

OTHER 12.5%

V///////////// ,~ TRW STUDY
I I GRC EXPERIMENT - ALL ERRORS

Figure 5.1. Error Frequency in Major Categories

5—2

I
I

I 4)1 4.4
‘C,

(‘) C
U) U~ Is.’ N- C”) ‘0 F’- -~ ‘~~ 00 i I

I ~~ ~~~~~~~~~~~~ Il -I’

~~

>~

I
1.4

4-4 4-) -? If’) 0~ 0 N- CO 4” ’) I II C.4 C’J —1 1 1 0 0

1 4 0

I Cl)
‘U4-4 44

C-I
0 .0o

I
14 c c)
I-’

~ ‘ ~~ --i .
~~ cc 0’~ m CC 0 00 I I 0.

~ U _-I ~~4 ~‘.J .-4 ~.4o 1 1 0
W C

0

I
Il~) z ‘4 ‘34

14 4)) 4- 4 (1’) 00 0 0 0’ ~-4 o
C”)

~~ o 3-i (‘4 ..~~ N- ~ 4 F’- CO ‘.0 (‘~ 0I >,~
~~~‘ 0) 14.4 0 . . .

.~~ 0 “ 4)) 3-~ .-4 (‘-1 . ~‘II 0
1-~ 

Z Q.i ‘U -l‘U

0~ ___  ___  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I 
‘U
C’..

If’) S
‘4

0 4.134

d 4’
~~” ~-4 4)) 3-4 (“4 0’~ If’) If’) CO (“1 (“4 .‘,QI

‘U ~~~ C~ ‘C”) 0 0’~ ‘.0 ‘1”) ‘.0 -~ “0 ~ 4 CO~ CO
“fl ’ ‘ 4 0 k  ,-l (-4 I ’ .~ 1-’

0~~~- 4 I ~4

0

I — _  _ _ _ _ _ _ _

-
~~

4)
1-4

— r. ,- . ~~ .0I ‘K 

( 0 0 1 4  ~~ l~ Q ~~ Cd-, 10
‘
__ .4 ‘—“ ‘-‘ ‘-~~ ‘-‘-4 ‘~~~ -~~ ‘- — I-’

U)
4-4 4)) 5 0
0~~e-4 0 4-1

I C’ ‘4 4)4) -(‘4 14’)
0 C4 S C‘ C 0.~~~~’4 “I
4)J 0 4-4 4~ .-4 4)

(11 1.4 -~-4 S ~ ‘C, 4) ~‘I 4)
(4) 4.4 0 .0  0 0) 14.4 U) .1-4

L JQ  c~ 5 c’~ (4) () C~ 1..I 4.4 H (‘3 C: ( “ 4 0 ( 0  (13
5 () I I  4-I C’ ‘U

“-i O 0. ~‘4 10 e~ ,4) 0) 00 10 0)
0 3 - a  E~ 0.0 4’) 4”) 4.4 4.4 4.4 ,5 (4)

I 
0. La l 0 ~~ 0 0 H 0 0 0

0 0 14) 5 (0 (0 4.4 44

0
______ __________ __________ ___________ ‘K

I
I



inspection was used to actually determine the error.  Other errors were

found directly by observing the control path behavior from the coverage

reports and the path statement definition listing. In a few cases the

wrong “error” was found and only some of the incorrect symptoms dis-

appeared (these are noted in Table 5.2).

Figure 5.2 shows the frequencies of error categories detected by

the methods described above. The dashed lines show the effect of some

degree of path testing coverage by reporting the sum of path testing

alone and inspection aided by path testing. As one might expect, logic

errors and computation errors (since they often cause a change in con-

trol flow) are the best candidates for path testing . i~rrors in these

two categories are often the most difficult to locate, unless a de-

tailed design and specification are also available. Input/output and

data definition errors are usually easily detected by inspection alone.

More comprehensive results are shown in Table 5.2. Note that not

all minor error types were seeded into the program, owing to project

limitations. For each error seeded, Table 5.2 shows the technique used

to detect it. An asterisk next to the technique’s indicator signifies

that the erroneous statement was located but the “correction” was not

the proper one, or that more information (such as a specification) was

needed to make the proper changes.

To assess the value of path testing , an acc”)unt was kept of the

resources expended. The average engineering time in hours for finding

each error is shown in Fig. 5.3. Most of the errors detected by in-

spection required only about 1 1/2 hours to find and correct. On the

other hand , the more difficult errors requiring path testing took about

4 hours.

5—4

-- ---  -~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ - - -~~~~ - ‘ -



I
I 

— — N —~~
~ 

I N C’

~~

’

~ 
N C’Th’ pI ~~~~~~~~ I

I ‘ - C4 - S C
S 1 r _

01 14
•0 14

I - - - 

~ +“ 
~~~~~ 

:-
~~~~~ ~~~~~~

‘ 

I I

3 
0 

~~~~ (a 
~0 I. 0 ’ OI 14

‘.
-~

I ‘U ~~~~~~~~~~~~~~~~~~~~ 4~~~~
~~‘ C

~ ~~~~~~~ 4g ~~ ~~~~~~~~~~~~~~~ 4~ (a
o —• 0 6) — 1), 1) 2 —l 4. 3’, I) 1 ‘3

H .-.~~~ ~~~~~~~
‘
~~ ~~ ~~~3 ’ ~ ~~~~~~~~~~~~~~ ‘~ -. u

~~
~~~~~ ,.~~~ —‘ C C  ~ 0 3.’. . ‘~ ‘ 4 4 4  Cd ~ 1 1 U

I ~~~~~~~~~~~~~~ 4 ’ 4 I a 14 l C .  ~~~“ ‘~~ 
~~~~~~~~~~ .4 ~~~~~~~~~~

I
~~~~~~~~ ~ H ~‘~ ~ ~~~e E C

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ I I ’

• ‘U C <3 -Q S.. Cd. ‘. 5.3 U U X I 40. = ~. 0 .

‘U C —
C’.. — - _ _ _ _ _ _ _ ____ _ _ _ _ _

I (0
II 1- C ‘~~ j - a

4—4 .4
~~J

— ‘)~ ~ N (‘4 .“4 C’a1 , — — en en -r ,.4~r’4 (‘I — .4 “I — ‘.3

I
-

I ‘U
OJ 3i —

0
(4 0
Oo _ ‘~~~~ Cd. 0 -~ (1

V < 0 o — <3 — 3 0
• 1) 11 .3 - - .4 44 - - - .4 , a, a.
I ‘U ~~~~~~~~ ~ . C d . —‘ -C I Cd. Cd. — Cd. Cd. ... ,,. ,,.

~~~~~~V (4
Cd (. — C

44 —

14 .-I I .., ,~ ~,,I S C  (~5 —1 - I o
(I)

0 H (5
4, 4,

H I”)

O (a -ao t@ I. — ‘n ,~~ ,g 3’,
.4 .4 14 ‘ - e ~~~ 

... (5 , — •11 14 Cl U .~ 4) 4) 3 0 5  = 0.~~~~ 
4) C.

‘2 — 1) .4 C r ,, 42 0. — , — a - c
3 . 3  0 14 1 . 4  — 11 .4 0 3 II 4
0’ ‘4 0 0 ‘.‘~ .3 14 Cd ‘4 -J Ci S. 0 - C )‘ (0 5
C1 C — — 0 U .4 14 0 4 )  1. (4 .4  — C

C, “0 ‘3 C -~~o S. c . - r o e  ‘~ 
-‘.

C 1. 1. C 14 1. 3 1* 1, 0 ‘~ - - 4’ C C - -  14 0
ft 41 C ‘.4 ~ C 0 F- L ’.t (4 — C “ ‘., 4

I C’ ~‘ C 0 - — U 1, 0 3  C . ., I . ”  14 54
• ‘3 4) ‘Ci 1’ 0. sI * c , , j ’. - 41 (4’ — 4’.

I C S .  0 1. 4) CS 3 I. It ,‘3 C :  — C —
-, 0 (4 5 Ci ‘2 0 54 .4 ’S 3 ~~ ‘.. C G .  ,3 --
14 — 6) - II t. s-I 0 0 2  ‘5’ It . ‘4

.2 3 (5 3 0 C) “C _I 2 1. ‘4 C C
IC, 14 0. ‘2. ) -,. 3 0 . 4 )  4-’ 4’. 0 , 4  C u ’ 3  0/1 4.

:0 C, 44 (5 4 0 > 0 (~ 0, ~~~“4 4 , 0 ,  , —C. ‘3 0 3 — ’  -- ‘  C, ~‘ n ”  CC. ’, ‘1 ’ CI 14 I I I
. 4 a 4 Sa U 

~‘ 2 ~~~~~~~~
’-’ ‘-z ‘

~~~~ “~~~~~~~~‘: ::~~~~~~~~~~ I4 A.

I “~~~~~~~~~~ ‘ . 0’ 0 14 0 ’ C L - C I t 0’ ‘- :‘ - - — — , —
C. E- 4 (4 4) 6) / C 1 . 4 (1 -~

,. 0 3 C .C. I- 05 ,4 0 0, ’., (, 4’ 12 ‘ I f .‘% I-’ 0 (C 3
- Cl 0 .4 IC S 0.4. :1 , 4’, — IC, C C. C’,

‘-‘ 1 ‘i u I IC (0 L Ot. ’ t .. -~ I C O I l 0. 4) - r -‘ U .4
- C. 0 (4’ 10 .0 14’~~~ (. 0 . 4’ ~~~~~~~~~~~~~~~~~~~~~~~~ .1 I C - ‘ -. Ci 4’ ‘S

(4’ 0 ,1 ’ — ~~~~~4” 3’ -4 s. . 0 . 4 0 ., , —* ,a~~~e’ -‘ s .f -a C ’ .~ < 3 — (.4

I 0 C’ CII 0 0 0 03 0 (“1 <3 ‘ 0 C’) 0 ~‘(3 C <3 Cl 0 0 C’ 0) 0) <3 k~ 0 0 II (0
— C, ,7 C ’ - — (‘a ‘C .~ 1ff (4) “., (5) (‘.4 Ci •, ‘0‘(C~ < ~~ II, .04 ,04 ((5 0 1 . .4 2 4.1 1.1

I

_________________ 29~COMPUTAT IONAL
___________________ 29~7 ERRORS 1 1 1 1 1 1 1 1 1 14%

I 29~

~~
////////////////////

~
A :: :::

~~
:J 35%

LOGIC

28%

14%13 ERRORS I I UIj 14~
________ 17%J!;PUT/OUTPUT

6 ERRORS I I l l i l I l I l l I I I 1 1 1 1 1 1 1 I I I I 1 1 1 1 1 Ii I l l i l l I l I l i i i I III 85%
0%

I
14%

--- -- ,

DATA HANDLING ‘~
14%

7 ERRORS 1 1 1 1 1 1 I I I I I I I I I I I I I I I I I I ! I I I I I l I 56%
________ 14%

________________ 25%INTERFACE
______________________________ 0%

4 ERRORS I I I I I I I I I I J I I I I I I I I ! I I I I i l I I I I I 50%
I 25%

_________________ 0%
DATA D E F I N I T I O N I 25%
4 ERRORS iI i I I I 1 I I I 1 I I 1 1 I 1 I I I III 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 ! 1 1111 75%

0%

_ _ _ _ _ _ _ _ _ _ 25%DATA BASE

~1 1 1 1 1 J 1 1 1 1 1 1 1 1 11
13%

________________________ 37%8 ERRORS
I 25%

DETECTION METHOD

A
~~~~~~~ PATH TESTING ONLY L~~ _ J  METHODS A + B TOGETHER

B I I I N S P E C T I O N  A I D E D  BY PATH T E S T I N G

C IIflhI I I I f l  INSPECTION ONLY

I UNDETEC TED ERRORS

Figu re 5.2. Path Testing Frequency of Detected Errors
By Category

5— 6

14 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_ _  ~~~~~~

‘

-
~~

I
I
I

_ _11111 1 0W’.,

I COMPUTATIONAl

I l l i Hifl Il
LOGI C _____________________________

I _

INPUT/OUTPUT _ _ _ _ _ _ _ _

DATA 1T ~ -HANDLI NI

INTER FACE

DATA T1~fl~llD E F I N I T I O N 1

~IIIIIIII ~
I DATA BASE

I I I
1 2 3 4 5 6 7 ‘~ 9

E N G I N E E R I N G HOURS
DETECTION METHOD

~~~~ PATH TESTING ONLY

I ~~~~ INSPECTION AIDED BY PATH TES TI N G
INS P ECTION ONLY
UNDETECTED ERROR

I
I Figure 5.3. Path Testing: Average Time Expended per Error

I
1 

7

I



V

5.3 STATI C, ANALYSIS PHAS~
Static analysis has capabilities for detecting infinite loops,

unreachable code , uninitialized variables, and inconsistencies in

variable and parameter mode. Some sophisticated compilers have a few

of these capabilities. In our experiment , static analysis detected 16

percent (8 errors) of the total 49 seeded errors. Figure 5.4 shows the

freq uency of de tec ted errors by major category , and Table 5.2 lis ts
each error type found by static analysis. One error detected by the

graph check ing capab ili ty of the static analyzer was unre achable cod e

due to a missing IF statement. This error (B400) was rot detected by

eithe r path testing or inspection. Unreachable code can be very diffi—

cult to locate in code filled with statement labels and three—way IF

statements as was the test object for the experiment. Unreachable code

may be harmless or it may not , but it is always a warning of possible

dangers or inefficient use of computer resources.

While static analysis did not detect a high percentage of errors,

and while most of the errors it did find were also detected by path

testing , it has the distinct advantage of being a very economical tool.

Only two engineering hours and 24 seconds of CDC 7600 time were re-

quired to review the static analysis output and locate the errors. A

disadvantage is that if programming practice allows frequent inten-

tional mixed mode constructs or mismatching number of actual and formal

parameters, the static analyzer will issue frequent warnings and

errors (133 in our experiment) that are harmless to the proper execu—

tion of the program.

Both error—seeding and error detection activities of the experi-

ment provided concrete data for several conclusions about the two

testing techniques. While the experiment was designed and implemented

in an objective manner and can be repeated by other interested re-

searchers, it is not our intention to apply a metric or statistical

significance to the error detection capabilities of the testing methods.

5—8



, ‘ I
I
I

COMPUTATIONAL 1 14%

I 7 ERRORS

LOGIC I 14%
i 1 3 ERRORS

INPUT/OUTPUT 1 17%
6 ERRORS

DATA HANDLING 
________ 1 28%

7 ERRORS

INTERFACE I 25%
4 ERRORS

DATA DEFINITION I 25%

1 4 ERRORS

DATA BASE 0%
8 ERRORS

Figure 5.4. Static Analysis: Frequency of Detected Errors by Category

I
I
I
I
I
i

- -
14 

-‘~~~—,_.-.. —--



It is ou r purpose , however , to report the types of errors that can be
detected by these techniques . The results of the experiment can also

be used as a reference for tool developers seeking to sharpen their

tools for more rigorous error detection .

1

5—10 )
- -•,-- -—~~~~~—-- s.- --———~ - . - _ _ _ _



I

_______________________
6. MULTI-ERROR EXPERIMENT

A mult i—e rror experiment was conducted to evaluate the u t i l i t y
of s tat ic  analysis and path testing under more realistic conditions

where several errors exist in a program. The experimental conditions

were designed to simulate a typical software testing environment in

which the program can be compiled and run but the performance or out-

put does not meet specifications .

There are two aspects of the multiple error situation which makes

it quite different from the single error conditions . First , the actual

number of errors in a program is not known. The tester might try to

estimate the number of expected errors, but will not be sure of the

extent of the testing task. Testing strategies may be adjusted on this

subjective assessment. Also , estimates of the testing time required and

the degree of tes ting completeness will be based on this imperfect infor—

mat ion.

The second aspec t of mul tiple errors not found in single error

conditions is the problem of one error masking the effects of another.

The syndrome of “jus t one more error” is due at least in part to error

symptoms which suddenly appear when an error is corrected . Many times it

is difficult to determine whether latent errors are exposed or new errors

are introduced when “correcting” a suspected error. There is also a

fatigue factor or saturation limit on the number of errors one tester

can find , and this limit is almost always less than the actual number of

errors in a program.

6.1 DESCRIPTION OF THE MULTI-ERROR EXPERIMENT

The multi—error testing environment was established by seeding

the 5000—line FORTRAN t~ st object (program) with 22 of the errors

used in the single—error experiment . The error categories and fre—

quency of seeded errors are shown In Fig. 6.1. This collection of

errors was the largest set which could be introduced at one time

I
6— 1

14 
. - - -



__________ 12.1%COMPUTATIONAL 1 14%1 13.6%

i n  T C  ___________________ 24.5%LvGO~ I 28%
- 

27.3°

INPUT/OUTPUT 7.8%

_ j  4.5°~

DATA HANDLING
- 

-~~~~ 18.2%

INTERF ACE 

9 . 1%

DATA D E F I N I T I O N

DATA BASE ~~~~~~~~~~~~~~~~~~~ 16.2%
- - 

- -
- 18.2%

OTHER 12.5%

F~~~’////////~l TRW STUDY
I I GRC EXP ERIMENT - ALL ERRORS 

-
- I MULT I_ E’~’POR EXPER IMENT

Figure 6.1. Error Frequency in Major Categories

6—2 0

C. - — - —
IC
-- -- ~~~~~~~~~~~~~~~~~ - ~~ - .~~~~~~~~~_ - -- -____________ -



I
and s t i l l  have the program run to “normal completion.” Figure 6.2

shows a comparison of the number of errors seeded with the number of

I errors found in other delivered software. This graph , taken from

Cannon ,’ indicates that 22 errors could be easily expected in a pro—

I gram of 5000 lines which has been acceptance—tested .

I Two testers analyzed the error—seeded program——one using SQLAB
for static analysis and path testing and the other using the debugging

I trace facility provided by the compiler. The two testers worked inde-

pendently and neither was involved with the single—error experiment.

The number of seeded errors was not disclosed to the testers.

Both testers were allowed the same amount of time (120 hours)

I to conduct their tests. Both worked from the same test object and

test dataset , and both used the same computer f ac i l i ty . Both testers

I were free to use extended compiler reports , insert debugging print

statements , and modify the supplied dataset.

• Activity reports were prepared as in the single—error experiment

to document the error analysis and correction process. A log was also

I kept to help document the sequence of actions taken in detecting errors.

6.2 RESULTS OF THE MULTI-ERROR EXPERIMENT

The results of the multi—error experiment are difficult to inter—

pret fo r a number of reasons . Individual performance in programming
and debugging is highly variable, and since only two people partici—

pated in this phase of the project , statistical measures cannot be

I derived with confidence. There are, however, some interesting corn—

parisons to be drawn from the data collected and some ideas for

improving testing tools and techniques.

“C. Gannon, “A Verification Case Study,” Proceedings of AIAA Computer s

~~r~~pace Conference, Los Angeles , November 1977.I
I 

6—3

I



10 ,000 0 MULTI -ERROR EXPERIMENT
“4

-

- • PROGRAM TESTING DATA
- S

- ~I v&v

= /‘/
- S

/ /LaJ 1000 —
-

0 -

0. -

La, - ‘ • 
,

44~~ 
•

0

LiJ

Ui -

-J /100 —

: j /

~~~~~

-

-

/
/‘

0.5%

10 I i i i i i i l I 1 1 1 1 1 1 1 1 I I i i i i i i l
1.0 10.0 100.0

THOUSANDS OF PROGRAM LINES

~ DATA FROM RUBEY El AL., LOGICON , 1975

• DATA COMPILED BY BALKOV ICH , GRC , 1977
0 MULTI-ERROR EXPERIMENT , GRC , 1979

Figure 6.2. Errors in Delivered Software .

6—4

-
14

—-
~~~~

_ _- -~ - — - --—-
~~~~~~~

-.— - - - ---- --- - --- ‘ . - - — -

I
I

The variation in individual performance in programming and debug-
ging was found to range over more than an order of magnitude by

1 2Sackman in the early 1960s . More recent experimen ts by Myers

confirm this variability and indicate that modern computer science has

not improved this aspect of human fa l l ib i l i ty . From these independent
results it is surpris ing how closely the results of the multi—error
experiment compare.

6.2.1 Error Detection Results

The results of the multi—error experiment are presented in Table

6.1 wh ich is organ ized by error ca tegory . Of the 22 seeded errors , 11

were found by the tester using the SQLAB test tools and 15 were found

by the tester using the debugging trace facilities provided by the

compiler. Nine of the errors were found by both testers. The bar graph

in Fig. 6.3 provides an overview of the categories of errors detected

by each tester.

The information in Table 6.1 is presented in another form in Fig.

6.4, organized by the order in which the errors were discovered by

the two testers. The horizontal axis represents the sequence in which

errors were found by the tester using the SQLAB test tools. The vertical

axis represents the sequence in which errors were found by the tester

using the comp iler ’s debug—trace facility. The error numbers and their

categories appear at the coordinate positions corresponding to when they

were discovered. For examp le , error EO47 was the sixth error found by
the SQLAB tester and the eleventh error found by the other tester. Hence ,

error EO47 appears at coordinate position (6,11) in the figure.

_ _ _ _ _ _ _ _ _

‘H. Sackmann , Man—Computer Problem Solving: Experimental Evaluation
of Time—Sharing and Batch Processing, Petrocelli Books, 1970.

J. Myers, “A Controlled Experiment in Program Testing and Code
Walkthrough/Inspections ,” CACM, Vol. 21, No. 9, Sept. 1978.

I
6—5

a
U —
F ‘0 ‘0~~~~~”~~ O~ICIC ~~~, I ~~”4 ’IC4 —, 0 4” 40 ,0 4’, 9 144

- ~, .- ~~~~~~~~ ,- a — , .4 o ’ , 4
4’, 0 ~~ .10 10 -fl r . 4 . 1 4’, (1 .‘4 4 1 t 4 (f l (, r’. .1 ‘t 04

4,,

U,,-

It. ,. 4 4’, 14
414 0 LII LII 0 Ifl (‘1 r’~ ‘0 LII ~1 ,0 0 LII 0 ‘0 (1 .1 (‘4 0

.., ,fl .-l 0S (’I 4’a --, .‘4 O,, a .4 .4 ~~~~~ o~ o .’a d
•0S’ LI,I,

l O W
_ _ _ _ _ _

4 a
ILl

.,a a

-

_ _

_ _

_ _

0 ‘
~0 “ ~‘ 4, ” “4, ‘~. “~ ~~ ~4, ”I, ‘-~ 0 ~~

ILl
“4

.
~~ ~~~~~~

-c 4 ~ m .I..~ 0 ‘00 40 I..I.. ~~ .e s
4J 4J Q~

0 C) IJ
a .

~ S U
pal 5

g .1 - s
a a 0 0 5

IZ4 C.)~~~~
0 0 1
ft -c

43 .3 a •
~‘a. IC

6—6

I
I
I

_ _ _ _

_ 3

I COMPUTATIONAL ______ 1
_ 1

I _LOGIC I 4
_ _ _ _ _ 2

_ 4
DATA HANDLING I 4

-
~~ 1 3

I
_ 1

INPUT/OUTPUT - - 1

I _ _ _

i

_ 2
INTERFACE I 1I

_ _ _

_ 2

I DATA DEFINITION I 1
_I 2

I _

4
DATA BASE I 3

1 2

I
I %~~~~1 SEEDED ERRORS

I I I ERRORS FOUND BY THE COMPILER -BASED TESTER

I 1 ERRORS FOUND BY THE SQLAB-BASED TESTER

I
Figure 6.3. Categories of Errors and Method of Detection

in the Mul t i—Er ror Experiment

I
6—7

IC

- - - -

NOT £085 £032
FOUND~~

— £089
B500

£00114 —

B500
w

EO7O—

H200w
I’-

£007 \c~ 1 2 -
A100

“0

— £047 \
D200 I £076-J

0.
B300

0
0_) £009

H300 I
~ 8 -
U,J

£067 I
La~ G200 I £002
V)

~ 6 - N
LaJ D900
0 £036

\ £072 I
c~~ 40 \ H200

£069
-

D200 \ I
2 — £014

£600 I
£015 iB300

I I I I I 1 I A ,,~,,
,......,....J

2 4 6 8 10
FOUND

ERROR DISCOVERY SEQUENCE -- SQLAB-BASED TESTER I
* FIVE ERRORS NOT DETECTED BY EITHER TESTER

I
Figure 6.4. Order of Error Discovery in Multi—Error

Expe r imen t I
I

6-8 1

I
Several direct

observations can
be made from

the representationI
of the data

in Fig. 6. 4 whiCh were
not apparent

in Table 6.
1. The four

-

errors included ~
n this experim~~

t which were
found using

SQL~B’5
static

analY~~
5 capabiUtY

and discussed
in Sec. 5. 3 are underscored

in the

figure. Error number
E036 was an

easY one,
found early by bOth testers.

This was a
data ~~nd1ing error

(category D400)
in which the

wr ong

variable name
was used as

an argument ~~
a 5Ubtoutmne

cal1. The other

three errors
seemed to be

mitch more
elusive.

The two errors
fo und by the SQLAB

tester but not
by the other

tester were
~j~ gnosed by

static analYsiS
. The first

was a data
defi

niti0fl error
(categorY G100)

which was
caused by ~~

angin~
the name

of a vatia
e. The change ~~

the name
caused a ~~

ange ~~
its default

datatype and
, hence , its attri~~

tes. This ertOt ,
number EOS5 ’ was

indica ted by two mode war
nings which

were ~~~~~
aged by 17 other

inno

cuOUS mode ~arniflgs ~~
the ~0~ tain1

n~
routine .

The second
error, number

E032, was 1ntroduc~~
by ~~1etin~ a

coft

ditional
branch statement

from a module
, simU1atl~~

a I’~~jssing
logic”

error (categorY
B400). This error was clearly ~j~ gnosed as ~akiflg a

secti0fl of code
unreachable .

Error number
E028 was found

by the tester
using the comp

iler ’s

I
trace facilttY

but not by
the SQLAB t es te r . This error was an inter-

face error
between program

modules (category
F700) - ~~t

was introduced

by simp lY ~~ver sing the order
of two parame

t~~
5 in a

subroutthe ~ead~-

SQLAB genera ted 12 mode ~~rningS
about this error but

none of the ~
arn 1ngs

was even near
the source

0f the error .
The ~arflings

were reported
at

the CALL
statements which ~~

vok~~
the erroneous

subr0uti~~
hut none

appeared at
the source

of the trouble
. The problem was compound ed

because the warnings
a11 disappeared

‘en the 0ffen~~~~

(which had no reported
errors) was r

emoved from
the anai~~~~

to expedite

I
I

14

~~~~~~~~~~~~~~~~ 

6-9



Four distinct classes of errors can be derived from the data in

Fig. 6.4. The four errors clustered in the lower lefthand corner

represent easy errors which are quickly and easily diagnosed and hence

are perhaps not serious problems. The other five errors found by both

testers are somewhat more difficult to find and hence might be classi—

fied as modera tely d i f f i cu l t The collection of eigh t erro rs found by
one tester and no t the other form a class of errors which are more
difficult to diagnose than the errors found by both testers. The last

f ive errors , which were not discovered by ~ither tester , represent a
class of subtle errors which are likely to escape de tec tion during
formal testing.

6.2.2 Resources Expended

The resources in terms of engineering and computer time used by

the two multi—error testers are presented in Table 6.1. Only the times

which could be directly attributed to individual errors are recorded in

this table. Hence, some of the entries have been left blank. Also,

the total times reported are larger than the sums of the individual

times recorded in each column.

The f irs t item to no te is the total engineering time spen t by the

two testers. Each tester was allotted 120 hours for their task. The

SQLAB—based tester spent 72 hours ; the compiler—based tester spent

only 50. Both testers expressed a feeling of having reached the limit

of their effectiveness in finding more errors. The SQLAB—based

tester seemed overwhelmed by the comp lexity of the mathematics and the
inscrutability of the program. The lack of specifications for the pro-

gram and documentation from earlier testing efforts also contributed.

The compiler—based tester thought there was probably only one error

left in the program (when in fact there were seven more errors) but

felt it would take an inordinate amount of time to diagnose.

6-10



I
I

Perhaps too much emphasis has been p laced on the testing tools

I and not enough on human factors. The psychological stress of testing

and debugging a program can be severe . Both testers found the task

I quite difficult and frustrating . The satisfaction of finding an error

did no t seem suf f i c ien tly rewarding to stimulate renewed efforts. The

reward was often the exposure of symptoms of more errors.

Comparison of the resources (engineering time , computer time ,

I etc.) used by each of the testers shows no statistically significant

dif ferences based on Sackmann ’s and Myers ’ evidence of individual

I variability. The time spent per error which can be derived from the

measured data showed the largest difference between the two testers .

I 
The tester using the SQLAB test tools spent 72 hours and found 11

errors or about 6.5 hours per error. The tester using the compiler ’s

trace facility spent 50 hours and found 15 errors or about 3.3 hours

I per error. The ratio of 6.5:3.3 (1.97), however , is still not stati-

stically significant. The compiler—based tester felt that the de—

I bugging—trace facility reduced the time he spent to about one—half of

the time he would have spent inserting debugging print statements

manually.

I 
Another parameter derived from the measured data was the amount

of time spent per computer run. The tester using the SQLAB test tools

spent 72 hours and ran 78 jobs or about 56 minutes per run . The tester

using the compiler ’s trace facility Spent 50 hours and ran 90 jobs or

about 33 minutes per run. The ratio of 56:33 (1.70) compares closely

I with the ratio of 1.97 found for the time spent per error. The tester

using the SQLAB test tools observed that many of SQLAB ’s diagnostics

I and warnings indicated violations of programm ing standards which did

not affect the computation and hence were not counted as errors. Each

warning had to be checked out , however , wh ich may accoun t for  some of
the differences in performance .

I
I

I 
a



The ac tivity repor ts wh ich wer e prepared by both testers indi-
cated that the tester using the compiler ’s debugg ing faci l i ties was
better able to discern the effects due to different errors in the pro—

gram. He was, therefore , able to isola te problems , focus his attention,
and find errors more quickly. His approach was to work on finding the

cause of the first discrepancy which appeared in the output. The rest

of the output was disregarded because it contained symptoms of other

errors wh ich would not help locate the first error.

The other tes ter , using the SQLAB test tools , spen t a cons iderable
amount of time study ing the reports genera ted by the tools and checking

out the reported errors and warnings. The test program contained many

viola tions of modern programm ing standards and prac tices which SQLAB
faithfully reported . Only four of the 22 seeded errors were fo und by
SQLAB ’s static analysis , yet the static analys is repor ts con tain 51
unrelated error and warning messages. Most of the warnings were mixed—

mode Holeri th expressions , and the error messages flagged “uninitial-
ized” variables that had been set via their equivalenced names. This

aspec t of SQLAB ’s repor ts ind ica tes the impor tance of using them during
program development to enforce good programming practices . The tester

was also misled by a modification which cleared several error symptoms

but did not correct the error. The modification created a more subtle

“double error” in a section of the program which was thought to be

work ing corr ectly.

The engineering time spent by the two multi—error testers is pre-

sented in another form in Fig. 6.5. In this figure the horizontal

axis represents the time spent by the SQLAB based tester and the ver-

tical axis represents the time spent by the comp iler based tester . The

scale represen ts the rank order of the eng ineering time s recorded in
Table 6.1. Erro rs which required more time have higher rank.

6—12



I
I
I NOT E032 £085

FOUN 
DJ~ 

— — 

B400 

— — 
*

I £076
B300

I ~4 —  \ £070

\ H200
u-i

£089I’)

E007 
B500l

— 

E036 
Ai QO

I I

-J
EOO2

~ 10 —

I C—) 
E001

I —

I I B500
u-i

E009 I £028I ~ 8-
H300 I ~

2: -

£047 II D200
C’!,

£067
-

I u-, G200
0

~‘ 4 -  I
£015 £014 I
B300 £608

I I2 — £069
D200

I — E072 I
W200

I I I I I I I I I I
I 2 4 6 8 10 

FOUND
RANK OF ENGINEERING TIME --SQLAB-BASED TESTER

I
* ALL ERRORS NOT FOUND BY EITHER TESTER

I Figure 6.5. Multi—Error Experiment Engineering
Time Reso urces

I 
-

I
6—13



The first observation which one can make is that the errors de-

tected by the SQLAB—base 1 tester using static analysis required rela-

tively little time to identif y and correct. This confirms the expected

utility of static testing for  a subse t of the errors encountered and is
perhaps not too surprising . Error E085 was well—camouflaged by other
warnings as described earlier and the diagnostics for error E028 were

somewhat misleading. The effects are clearly displayed in Fig. 6.5.

The data from the nine errors tha t were found by bo th testers can
be further analyzed as samples of the error detection and correction
process. Two simple non—parametric statistical tests were applied to

this data. The Wilcoxon two—sample test for unpaired samples showed

no significant difference in the engineering time expended by the two
testers on these errors. The Spearman rank correlation was also com-

puted from this data and was found to be quite small (r~’— .208). The

significance of this result is unknown and no explanation has been
found. -

6.2.3 Examples of Errors Not Found

At the conclusion of the multiple error experiment , five errors

had not been found by either of the two testers. The SQLAB—based

tester estimated there were considerably more errors left than the 11

she had found . The compiler—based tester knew there was at least one

more error but thought it was probably the last.

The three errors in the “compu tational errors” category proved to
be the most difficult to find . This might have been expected since

neither tester was very familiar with formulas for missile flight ,

elliptic orbi ts, or coordinate transformations in three dimensions.
Error number E007 was the only error in this category found by both
testers. It was one of the last errors found and required more than

average time to discover.

6—14



I
I

Error number E008 was very similar in form to error E007 but was

I not found by either tester. For error E008 an intermediate result in

the calculation of the Euler angles for an orb it was calcula ted using

I the wrong operand in the equation [(cos(~3) instead of sin(6)1. A

major contributing factor to the difficulty with this error was that

the correct values for the computed Euler angles were not available to

I the testers. Only af ter many steps of in tervening compu tations were
the e f fec ts of this error finally exposed .

I
Unit testing of the module containing error E008 would have

I readily shown the existence of an error. It is believed , however , that
this error would have been diff icult to isolate and correc t even if the
search was restricted to the program module containing the error .

Error number E018 was the third error in the “computational” cate—

I gory and represented the sub—category “Incorrect use of paren thesis”

(A200). The calculation of the length of the major axis of an elliptic

I orb it was changed from

A=GCON*ADIV(R , (2.  *GC0N_R* (VR**2+VQ**2)))

I to

A=GCON*ADIV(R, (2. *GCON..R*(VR+VQ)**2))

Several addi tional orbi tal parame ters were then computed using the value
of A. As with error E008, the correct values of the orbital parameters

I were not available to the testers and the effects were not evident until

some time later. It should be noted that the tester in the single—

I error experiment also failed to find this error.

I Only one error in the “logic error” ca tegory was m issed by bo th
testers. This was error number E013 in which the wrong statement label

I was assigned to a program variable thus causing a control flow error .

The “assigned COTO” is one of FORTRAN ’s more baroque features and it

was used exten sively in the module containing this error. In fact ,

I
I 

6—15 

--- - - -“-- -



the control flow in this module was so comp lex that SQLAB’s restruc-

turing capability failed to sort it out. SQLAB ’s restructuring capa-

bility is used to convert unstructured code into structured code auto-

matically but in this case it failed to complete the analys is of all

the possible paths within this module .

Error number EO78 was intended to simulate a database error ,

“data units incorrect” (H300). The seeded error also looks like an

“incorrect operand in equation” (A100), a compu tational error , although
it does exhibit units problems . In the calculation of the position ,

veloci ty,  and acceleration of an object in orbit the intermediate

result

Q=2. *ATAN2(Xl ,X2 )

was changed to -

Q=TWOPI*ATAN2(Xl ,X2)

where TWOPI was a variable initialized to 6.2832 (radians). The func-

tion ATAN2 (arctangent) returns an angle also with units of radians.

Hence the value computed for Q, which is an angular displacement , would
have incorrect units of radians—squared. Neither of the multiple error

testers discovered this error. The single error tester found the

offending statement but was unable to synthesize the correction.

6—16



I
I 

_ _
7 CONCLUSIONS

I This project provided the opportunity for a critical ;,nd objective

assessment of the only two automated testing techniques tha t are mature

I enough to be usef ul, path testing and static analysis. There are two

unique aspec ts of this projec t tha t dis tinguish the resul ts from

I similar software testing evaluation experiments.

1. The test engineers did not know the type

or location of the program errors.

2. An automated test tool was used for error

I detection.

Experience has shown us that a simulated tool evaluation of a particular

testing technique based on knowing the type and location of an error

does no t address many of the d i f f iculties faced by us ing a real tool
and not knowing anything about the error(s). Because software normally

contains numerous peculiarities of design or implementation, wha t

constitutes an error may not be obvious. Furthermore, automated test

tools (like compilers) are unforgiving in their consistence checking.

Static analysis is particularly a f f ec ted by this characteristic. For

I a single, erroneous mixed mode expression, there may be hundreds of

correc t, in tentional ones , yet the static analyzer will faithfully

I report all inconsistencies.

Similarly, while executing a particular path might cause an error

I to manifest itself in the ou tpu t, doing so may cause many other paths to

be execu ted , perhaps completely masking the error. This problem becomes

I acute when the output—producing code is distant  from the source of error .

I f the error location is known from the s tar t , it may be a simp le m a t t e r

to determine the effectiveness of a particular testing technique.

I While the individual characteristics of the test tool used in the

experiments undoubtedly played a par t in the results , the primary

testing e f f e c tiveness , we feel , is due to the two techniques used.

I
7—1



For example , the DAVE system , a static analyze r, was found to detec t

one class of errors (too many/too few statements in a loop : 8500)

but unable to detect others (such as missing logic or condition tests:

B400). Similarly,  the path testing tool used in the exper imen ts, SQLAB ,

did no t provide the valuable dynamic tracing information provided by
other path—testing tools such as the JOVIAL Automated Verification

System (JAVS) .~
’ However, we believe that the data generated in the

experiments provide a good foundation for some conclusions about the

testing methods.

As described in earlier sections , for these experiments an error

is incorrect implementation of a specification or reliance on a compi-

ler’s, operating system’s, or machine ’s nonstandard capability. Examples

of “nonstandard” capabilities are assuming storage is preset to zero or

assuming arrays adjacently declared necessarily share contiguous storage

space. The “nonstandard” type of errors were removed from the test

object before starting the experiment, in order to not make the test

analyst’s task of finding seeded errors even harder. This rlICmoval did

not , however , eliminate the error and warning messages described In

Sec. 6.2.2.

In add it ion , errors derived during the error—seeding process that ,
though the site was executed , did not manifest themselves in the out-

put , were not sown in the program for subsequent detection. This was

done because , owing to the lack of program specification , a listing of
the correct program ’s output was used as the only specification . Al-

though 22 errors (25% of the total errors generated by the error—

seeding process) whose sites were executed were not used during the

“C. Gannon and N. B. Brooks, JAyS Technical Report, Vol . 1: User’s
Gu ide , General Research Corporation CR—l—722/l , June 1978.

7—2



I
I

exper imen ts, their exis tence is the bas is for one major conclusion

I of this evaluation: Errors may reside on paths and statements that,

although execu ted , may no t show up in the output for the test data

I used. Thus testing must face the issue that more information must be

supplied in a program during development (at, undoub tedly, grea ter

I 
programmer effort) to (1) direct testing of legal sequence of paths,

and (2) specify functional correctness of statements and paths.

1 7.1 EFFECTIVENESS FOR ERROR DETECTION

When an error is known to exist, as in the error—type detection

I experiment (Phase 2——single—error experiment), it was found that 40 per-

cent of the errors were read ily fo und by inspection , 45 percen t more

I were found using path—testing assistance, and the remaining 15 percen t

were not found or were improperly corrected. The errors found using

I 
path testing were significantly more difficult than those found by

inspec tion , al though no quantitative measure can be given for “diffi-

culty .” The average time spent on errors found by inspection was one

I hour , whereas for the more difficult errors found by path testing the
average time was three hours.

I
Path—testing tools do not generate error messages indicating the

I source of an error in a program . They do , however , provide a grea t

deal of assistance by narrowing the scope of the search for errors and

reduc ing the number of possible error sites which must be investigated .

1 Hence , pa th tes ting is really enhanced inspection. The enhancement

increases the probability of finding an error by inspection from 40 to

80 percent.

Path sequence information was found (by the tracing capability of

the compiler used in Phase 3——multi-error experiment to be more

valuable for  f ind ing errors than pa th covera~ge information. The major

drawback of typical pa th tracing tech niques is the volume of rather
useless output surrounding usually one or two lines ind ica ting

I

______ _____ ______



incorrec t behavior. An improvement which could be supported by a test

tool would be a condensed report which would retain the valuable se-

quence information. We feel that research should be directed toward

de termin ing wha t a “valuable” sequence is. Of special consideration

ar e sequences which are func tionally impor tan t and those which lead up
to or include threshold or boundary conditions .

Pa th tes ting was found to be helpful in all error categories .
There are examples of errors in each category which required the use of

path coverage information to discover the source of the trouble . How-

ever , seven of the nine errors not found in the error type de tection
experimen t were from the “computat ional ,” “logic ,” and “database”

ca tegor ies , indica ting some weakness of path testing in these areas.

Static analysis is credited with finding nine of the 49 errors

used in the error—type detection experiment——one of which was not found

by the path testing analyst. The economy of static analysis is shown by

the cost of its use (two engineering hours and 24 computer seconds)

compared with the path testing cost for the same errors of 13.5 en-

gineering hours and 110 computer seconds. Even though only one of the

errors generally more difficult to diagnose was found using static

analysis, it is an effective tool for screening some errors . It has

the advan tage of genera ting diagnos tic messages about errors at their
statement location , and it does not depend on any knowledge of error

manifestation .

7.2 EFFECTIVENESS FOR VERIFICATION

Path testing provides little support for determining the correct-

ness of programs , even through exhaustive path coverage. The correct

functioning of a program has to be checked by other means. The primary

function provided by path coverage is an indication of parts of a pro-

gram which have not been exercised. Full pa th coverage does not ensure
complete or sufficient testing, since errors may occur on sequences of

7—4



-
I
I

paths which have not been tested. Furthermore , path testing and static

I analys is are no t capable oi evaluating func tional correc tness unless
test data are derived from the software specification .

Even with these limitations in mind , there appears to be consid—

I 
erable room for improveiuent in path—oriented verification tools. The

missing ingredient seems to be a specification of the legal path se-

quences which a program should be allowed to traverse. The combina—

ton al nature of this problem makes it intractable for even small pro-

grams. Approximations or heuristic algorithms , however , may y ield

I acceptable solutions for many real programs.

I Hamle t~’ describes a promising approach of using “computational
specifications” to complement the standard use of “functional specifi—

I 
ca tions” for programs . Computational specifications impose additional

constraints on how results are to be obtained . Functional testing can

be performed onl y on a small subset of the input domain . However , if

correct results are obtained using the prescribed computation , then the

small sample tests can be shown to be reliable. We expect that path

I sequence information will be a major component in such computational

specifications.

7.3 VALUE OF ERROR SEEDING

I The pr imary advan tage of seeding errors for  experimen ts is the

control it provides over the types and distribution of errors in a pro-

gram. Programs with authentic errors which satisfy req uirements for

I test ing experimen tal hypotheses are simply not available on demand .
This control , we feel , is more important than the true authenticity of

the errors.

I ~R. C. Hamle t , “C r i t ique of R e l i a b i l i t y  Theory , ” Work shop D i g e s t,
Workshop on Software Testing and Test Documentation , Ft. Lauderdale ,
Florida , December 1978.

I

II



The three testers involved in the error type de tec t ion  and tes t ing

technique evaluation experiments in this study agreed tha t the seeded

errors were very realistic. They did not feel tha t the environmen t was

at all artificial or contrived . This was probably due to the care
taken in error selection and seeding . It also indicates that  the re-

sults of the experiments apply directly to real programs with authen tic

errors -

One of the fac tors  that was not controlled in our experiments was

the sub t le ty  of the seeded errors and , hence , the d i f f i c u l t y  of the

discovery . Def in ing  subtlety may not be easy . In general , the  most

d i f f i c u l t  errors to discover were those which propagated incorrect

resu l t s  through long sequences of computat ions with no outward sign of

trouble. When the symptom finally surfaced , the link back to the

originat ing error was comp letely obscured. Using  degree of obscuri ty

as a measure of subtlety , one could construct a test program seeded with

easy errors , difficult errors , or some comb ination to test an hypotheses

about the effectiveness of a particular test tool or method.

An analogy can be drawn be tween testing sof tware and other

scient i f ic  investigations. Error—seeding experiments correspond to

laboratory experiments where conditions can be controlled and many para-

meters can be measured. Production programs in actual use correspond

to f ie ld  studies where the conditions cannot be controlled and some

measurements cannot be made . The analogy extends to the need fo r  rele-

vancy between error—seeding experiments and delivered software just as

the need exists for relevance between laboratory experiments and field

studies. We highly recommend the practice of error—seeding to software

t e s t i n g  and ve r i f i ca t ion  tool developers as a measure of effect iveness .

7—6



I
I
I
I
I

APPENDIX A

Small Programs for

Preliminary Analysis

I

II



050 SCLPAL RCSEARCH CORP SANTA SAReARA CA SYSTEMS TECI*4O—ETC no
AN £XPE*ICNTAL EVALUAT ION OF SOFTWARE TESTINS. CU )
NAY 70 C SAMSON. R N CSCN. N e *OOSC S FWS*0—TS—C—0&03

UNCI.ASSI F LEO ..c—c~—1—4e4 AFOSR—TR—75—OflS to.

I



11111 1.0 ~~~
_ _ _ _  

L 2.2

H ~~~~~~~~~ ~~~~

IlIlI~Iffl~I.25 II1IU~ iiiii~
MICROCOPY RESOLUTION TEST CHART

NAII ONA L AtJ R LAU OF S 1AN OA R DS-~ 963 A 4



PROGRAM SINEFCN IINPUT,OUTPUT,TAPES=1NpUT,TAPE6:OUTPUT,TApE12
C
C DRIVER PROGRAM TO T EST THE POUDLE PRECISION SINE FUNC1IUN
C REG MEESON 7/11/78
C

DOUBLE PREC1SIOt~ SIN, OSIN, OGLE , REF. VAL E E
RcAl. X

C
WR UE(6 ,100)

10 REM) (5,110) X , E
WR ITEI6 ,120) X , E
IF ( C •EU. 0. ) STOP
REF DSIN( DDLEV’J I
VAL SIN (X.()
WRITE(6,130) REF , VAL
GOTO 10

C
100 FORMAT ( 261i SINE FUNCTICN TEST DRIVER /1  )~110 FORMAT( F-10.q, 010.2
120 FORMAT I 3H X=, F10.4, 7H C:, 020.12
130 FORMAT ( 1H+~ qsX, IeHREF:, 020.12, 911 VAL . 020.12

C
END
DOUBLE PRECISION FUNCTICN SIN(X ,E)

C
C SOURCE MERN1GHAN MW PLAUGER
C THE ELEMENTS Cf PROGRAMMING STYLE
C PAGE 77.
C
C THIS DECLARAT IOr, COMPUTES SIN (X) TO A CC URA I~T C

DOUBLE PRECISION E,TERM,SIjM
REAL X
TERM X
DO 20 1:3,100,2
TCRP TERM*X*s2/ (I*(I—1))
IF(TCRI4.LT.L)GO TO 30
SUP’ SUR + (—1*s (I/21 )*TLR9(

20 CONTINUE
80 S1l~~SUM

R E T U RN
(ND

•~‘236 1.000—08
3.114159 1.OOD—08
— .1 1,000—08
0. O.O0U+O0

• 

PROGRAM CURRENT .(1NPUT,OUTPUT,TApE5~ INpUT,TA pE6:OUTPUT,TApE12)
C
C CURRENT COMPUTING PROGRAM
C
C SOURCE: KERNIGHAN AND PLAUGER
C THE ELEMENTS OF PRCGRAMMING STYLE
C PAGE 79.
C
C INPUT VALUES FOR RESISTANCE, FREQUENCY AND INDUCTANCE

RCAC (5.ao) R,F,L
20 FORMAT (3F1O.~e)

C PRINT VALULS OF RESISTAMCE . FREQUENCY AND INDUCTANCE
WRITE(6.30) R,F,L

SO FONMAT (5M111:,F14.4,4H F:,Fiq,14,14H L:~F1’e.14)
C Ir,PU1 STARTING AND TERMiNATING VALUES OF CAPACITANCE.AND INCREMENT

A-2

0



•1 ~
REAO (5,40) Sc.TC,CI

140 FORMAT (3F10.6)
C SET LRPALITANCE TG STARTING VALUEI C:SC

U C SET VOLTAGE TO STARTING VALUE

I
C PRINT VALUE OF VOLTAGE

50 WRIT (16,601 V
— 60 FORMAT (3HOV ,F5.0I

C COMPUTE CURRENT A l
70 Al = C / S(.~ T(H.*2 + (6.2832*F*L — 1.O/(6,2832*FsC))s.2)

I C PRINT VALIJLS OF CAPACITAP,CE AND CURRENT
1 WRITL(6,80) c,A I

80 FQRMAT (3HOC .F7.5,9H I:,F7.5)

• C INCRE ASE VALUE (iF CAPACITANCE
I C :V + C j
1 iF (C •LE. TC) GO TO 70

C INCREASE VAL UE OF VOLTAGE
• : V + 1.0
I C STOP IF VOLTAGE IS GREATER THAN 3,0
1 IF (V .I.E, 3.0) GO TO 50

STOP
END

I
I 10. .159 10.

.08 .12 .01

I — 

PROGRAM NUMALPH (INPUT,OUTPUT,TAPE5:INpUT,TAPE6:OIjTpLT,TApC12)
I C
• C A PROGRAM WITH A SUBTLE IP,XTIALIZATICN ERROR
a C

C SOURCE: KERNIGHAN AND FLAU~,ER
• C TIlE ELEMENTS CF PROGRAMMING STYLI

1 C
C
C AUGMENTED TO PRODUCE SOME OUTPUT 7/13/78 REG PEESCN

I C

I DIMENSION NUN (80),NALPHA (80)
DATA NBLANM /111 /
READ (5,101) NALPHA ,MUN

I ID1 FORMAT IBOA 1.T1,0011)
WRITE (6,102) NALPHA , NUN

102 FORMAT ( 1144 INPUT DATA / 1HO,80A1 / 114 .8011 ~NUM :O
a N :0

1 .00 30 I ~ 1,80
IF (NALPHA(I) •EQ. NBLAMK ) GO TO 30
N = N + 1
NSUM = NSUN • NUM (I)

30 CONTINUE
WRITC (6,103) N. NSUM

103 FORMAT ( 3OHOTHE NUMBER CF DIGITS FOUl1C IS, 13 /

I s 2911 AND THE SIJM OF THE DIGITS IS, 19 1
STOP
END

I 3 55 127 3467 124689
12395 1 3 5 7 9  2 1 4 6 8 1 0 12 114 16 18 20 5 10 15 20 25 3

Sea.Seae.e~~ a e e~~~~~~~~ e e . a aneen

1 A-3

0



PROGRAM BALANCE (INPUT,CUT I’UT .TA PL~:INPUT ,TAPC(~~OUTPLT,TA PEI2)
C
C COMPUTES A TABLE OF MONTHLY BALANCES AND INTERE ST CHARGES FOR
C A GIVEN PRINCIPAL AMOUNT, INTEREST RATE, AND MONTHLY FAYMENT.
C
C SOURCE: KERNIGHAN AND PLAUGER
C THE ELEMENTS OF PRGRA MMING STYLE
C PAGE 85.
C

— C CONV ERTED TO FOUTRAN 7/11/78 MEG NEESON
C

REAL A , H. N, B. C. P
C

10 READ (5,101) A , R. N
101 FOR4eAT (3F10.4)

WRITC(6.1021 A. R. N
102 FORMAT (1414 THE AMOUNT Is,F1O.2,

S 2311 TIlE INTEREST RATE IS,F6.2,
$ 2511 THE MONTHLY PAYMENT IS,F8.2)
IF (H .L(. A*R/12u0.) GO TO 30
WR IT E(6, 103)

103 FOItMAT IIII—,
$5911 MONTH BALANCE CHARGE PAID ON PRINCIPAL / I

Co 18 1=1,60
C:D*R/1200.
IF (B4C •LT. MI 60 TO 20

18 WRITE(6,181) I, 8. C, P
181 FORMAT (113, 3F13.2)
20 BPLUSC B~CWK IT L(6 ,2 01 )  BPLUSC
201 FORMAT I3SIIOTHEHE WILL EC A LAST PAYMENT OF

60 T O 10
80 WR IT E(6 ,301)
801 FOR44AT (3OHOUNMACC (PTA BLE MONTHLY PAYMENT I

60 TO 10
END

•

500. 18. 145.
100. 9, 17,

1200. 15. 12.

• ~~~~eaea sea e . .e ee . a S 5 5 5 5  e_ ~~ e ; e _ _~~~_ ;_ ae_ _ _~~~_

PROGRAM BINSRCH IINPUT,OUTPUT,TA PL12)
C
C BINARY SEARCH PROCEDURE TO FIND AN ELEMENT *Ae IN A TABLE sxs
C T h E ELEMENTS IN •X* MUST ALRE A DY BE SCRT(O INTO INCREASING ORDER
C
C $OURCE~ NERNIGHAPI AND PLAUGER
C TIlE ELEMENTS OF PROGRAMMI NG STYLE
C PAGE 87.
C

DIMENSION X1 2 0 0 ) ,T4 2 00 )
READ 50, N

50 FO RMAT ( 15)
S REAL) 51, (2(K) ,  TIM), K : Ii N)

51 FORMAT (2F10.5)
READ 52.A

52 FORMAT (F1O.5)
IF (X ( 1)—A 1141 , 41, 11

141 IF (A — X ( N) ) 5 ,  5, 11
11 PRINT 53.A

A-4

p —



I ~~ FORMATUH ,FiO.5,1 26K IS NOT IN RANGE OF TABLE.)
STOP

S LOW = 1

I IHIGH :N
6 IF ( t HI GH— LOW —i ) ? ,  12. 7

12 PRINT 54~ X LOW , YLOW. A.  XHIGH, ThIGH
514 FO RHAT (3. H SF10.5)

I STOP
• 7 MID : (LOW + IHIG44)/2

iF (A ~ X (4 c I C ) ) 9 ,  9, 10
9 1111611 MIDI 60 T0 6

I 1D LCW MID
GO TO 6

• [lID
I S.

1 7
—3.2 1. -

— .1 2.
I 1.3 3.
1 0.7 14.

20.5 5,

• 22.8 6,
I 697.4 7,
1 1.

PROGRAM INTEGR8 (OUTPUT,TAPE2=OUTPUT,TAPE12)
C

I C INTEGRATES A POLYNOMIAL BY TRAPEZOIDAL APPROXI14ATICN
C
C SOURCE: KERNIGHAN AND PLAUGER
C THE ELEMENTS CF PROGRAMMING STYLE
C PAGE 91.I C

I AR [A 0.
X 1,

• DELTX:O.1
• 9
$ X:X40(LTX

YPLUS:X**2+2.*X+3.

I tO AHEA :ARCA+tr pL( iS+Y)/2 .*CELTX
IF (X 10.)9,15,15

15 WRITE (2,7)ARE:A
7 FORNAT (E20.8

I STOP

1 END

•e~~~as~~~.Se Sflfl SeS~~~ Sese

I PROGRAM FLOATPT (INPUT ,OUTPUT,TAPE 1 OUTPUT .
$ TAPE2 INPUT,TAp (3:waTpUT,TApEI2)

C
C TESTS FOR EXACT (QUALITY BETWEEN COMPUTED FLOATING PoINT NUMBERS

I C
C SOURCEI MERNIGHAN AND PLAUGER
C THE ELEMENTS CF PROGRAMMING STYLE

I C PAGE 93.
I C
I C RIGHT TRIANGLES

LOGICAL RIGHT, DATA
00 1 K 1.100

i



READ (2,10) A. B, C
C CHECK FOR NEGATIVE CR ZERO DATA

DATA = A.GT.O. .ANC . L4.GT.O, ‘AND, C.GT.O.
IF (.NOT .OATA) GO TO 2

C CHECK FOR RIGHT TRiANGLE CONDITION
A A.*2
B = B s * 2
C :C**2
RI6HT A.EQ.8+C •OR. R.EQ.A.C .OR. C.EQ.A+D

I WRITE (3,11) K. RIGHT
CALL EXIT

C ERRCR MESSAGE
2 WRITE (1,12)

STOP
10 FORMAT (3F 10.4)
ii FORMAT(1 6,Li2)
12 FORMAT(1111 I3ATA ERROR )

(ND

1. 2. 5.
5. 12. 13.
3. 14. 5.
.05 .12 ,13

-

0. 0. 0.

S • S S S s S e e e a  5 s 5 5 55 5 s S

PROGRAM AREATRY (INPUT,CUTPhJT,TApE2:If ~pUT,TApE3:OUTpljT,TApC12)
C
C FIRST ATTEMPT FOR APPROXIMATING AREA UNDER A CURVE
C
C SOURCE: KERNIGHAN ANC PLAUGCR
C TIlE ELEMENTS CF PROGRAMMING STYLE
C PAGE 96,
C

1 AREA :O.O
READ (2 , 10 )T

10 FORMATIF1O.4
41:0.1
X O,O

2 XPI .A
AREA :AREA+ (6.0*(2.O**XN)46.Os (2,O*.(XN.H) ))*0,1,2.O
X:X4H
IF (X.T)2,8,9

0 WRIT ((3,33)AREA
33 roRM ATIm AH(A :.FB.5)

GO TO 1
9 CALL EXIT

END

3.
5.

S

ii
I ;

A-6 I
0 

s— — —



I
I
I

I 
APPENDIX B

I Chronological List of Submitted Papers

I
I
I
I
I
I
I
I
I
I
I
I B-i



The following collection of abstracts, papers and documents

was supported by AFOSR F49620—78—C—0l03.

1. C. Gannon and R. N. Meeson, “An Empirical Evaluation of Static

Analysis and Path Testing,” abstract submitted (Jan. 1978) to the

Computers in Aerospace Conference II in Los Angeles, California,

October 1979.

2. C. Cannon, Empirical Results of Static Analysis and Path Testing

of Small Programs, General Research Corporation RN—2225 , March

1979.

3. C. Cannon, “Error Detection Using Path Testing and Static Analysis,”

paper submitted to Computer magazine of the IEEE Society (March

1979).

4. C. Cannon, N. B. Brooks, and R. N. Meeson, An Experimental

Evaluation of Software Testing, Final Report, General Research

Corporation CR—1—854, May 1979.

5. C. Cannon and R. N. Meeson, “Implications for Test Tool Improve-

ment,” to be submitted to COMPSAC 79, the IEEE Computer Society’s

Third International Computer Software and Applications Conference,

Chicago, 1979.

3—2



I
I
I
I
I
J APPENDIX C

J Personnel Associated with the Project

I
I

I

I
I
I
I
r



The following personnel were contributors to the research effort

and set of experiments:

1. Dorothy Andrews, MSEE, University of California, Santa

Barbara

2. Jeoffrey P. Benson, PhD , University of Californis , Santa
Barbara

3. Nancy B. Brooks, MS, University of Illinois

4. Carolyn Cannon, MSEE , University of California , Santa
Barbara

5. Reginald N. Meeson, MSEE , PhD candidate, University of
California, Santa Barbara

6. Sabina H. SaJ.b, PhD, University of California, Los Angeles

C— 2

- _.~ _jr- ’ — -



I

_ _ _
Bibliography

1. B. W. Boehm, “Software Engineering: R & D Trends and Defense Needs,”
Proceedings of the Conference on Research Directions in Software
Technology, October 1977, cited on p. 1—2.

2. D. J. Reiffer and R. L. Ettenger, “Test Tools: Are They a Cure—All?”
Proceedings of the 1975 Annual Reliability and Maintenance Sym-
posium, IEEE 75CH0918—3ROC , January 1975, cited on p. 1—2.

3. J. B. Goodenough, “A Survey of Program Testing Issues,” Proceeding~s
of the Conference on Research Directions in Software Technology,
October 1977, cited on pp. 1—2 , 1—3.

4. W. C. Hetzel, An Experimental Analysis of Program Verification
Methods, Thesis, University of North Carolina, Chapel Hill, N. C.,
1976, cited on p. 1—3.

5. C. Cannon, “A Verification Case Study,” Proceedings of AIA.A
Computers in Aerospace Conference, Los Angeles, November 1977,
cited on pp. 1—3, 6—3.

6. W. E. Howden, “Symbolic Testing and the DISSECT Symbolic Evalua-
tion System ,” Computer Science Technical Report II, University of
California, San Diego, May 1976, cited on pp. 1—3 , 1—4.

7. W. E. Howden, “Theoretical and Empirical Studies in Program Testing,”
IEEE Transactions on Software Engineering, Vol. SE—4, No. 4, July
1978, cited on p. 1—3.

8. E. R. Mangold , “Software Error Analysis and Software Policy Impli-
cations,” IEEE EASCON, 1974, pp. 123—127, cited on p. 1—3.

9. B. W. Kernighan and P. J. Plauger , The Elements of Programming
Style, McGraw—Hill, 1974, cited on pp. 1—4, 2—1.

10. R. E. Fairley, “Tutorial: Static Analysis and Dynamic Testing of
Computer Software ,” Computer, April 1978, cited on p. 1—4.

11. D. M. Andrews and J. P. Benson, Software Quality Laboratory User’s
Manual, General Research Corporation CR—4--77O, May 1978,
cited on p. 1—5.

12. L. D. Fosdick and C. Miesse, The DAVE System User’s Manual, Univ—
ersity of Colorado, CU—CS—l06—77, March 1 977 , cited on p. 1—5 .

13. T. Plainbeck , The Compleat Traidsman, General Research Corporation,
IM 711/2, September 1969, cited on p. 3—1.

14. T. A. Thayer, et al., Software Reliability Study, TRW Defense and
Space Systems Group , RADC—TR—76-238, Redondo Beach , California,
August 1976, cited on p. 4—1 .

15. M. J. Fries, Software Error Data Acguis1tio,~~ Boeing Aerospace
Company , RADC—TR—77—130, Seattle, Washington, April 1977, citedJ on p. 4—1.

i



Bibliography, cont.

16. Verification and Validation for Terminal Defense Program Sof t—
ware: The Development of a Software Error Theory to Classify
and Detect Software Errors, Logicon HR—74012, May 1974,
cited on p. 4—1.

17. H. Sackmann, Man—Computer Problem Solving: Experimental Evaluation
of the Time—Sharing and Batch Processing, Petrocelli Books, 1978,
cited on p. 6—5.

18. C. J. Myers, “A Controlled Experiment in Program Testing and Code
Walkthrough/Inspections,” CACH, Vol. 21, No. 9, Sept. 1978, cited
on p. 6—5.

19. C. Gannon and N. B. Brooks, JAVS Technical Report, Vol 1: User’s
Guide, General Research Corporation CR—l—722/l , June 1978,
cited on pp, 3—6, 7—2.

20. R. G. Hamlet, “Critique of Reliability Theory,” Workshop Digest,
Workshop on Software Testing and Test Documentation , Ft.
Lauderdale, Florida, December 1978, cited on p. 7—5.

D-2

_ _  --


